Job Manager is taking very long time to finalize the Checkpointing.

classic Classic list List threaded Threaded
14 messages Options
Reply | Threaded
Open this post in threaded view
|

Job Manager is taking very long time to finalize the Checkpointing.

Slim Bouguerra-2

Originally posed to the dev list
---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>


Hi Devs,
I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )
When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.
I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)
As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))
Now the question is why this metadata file is so big in the order of 3GBs in my case.
How does this size scale ? num_of_tasks * num_states ?

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm
Is there a config flag I am missing to make this last step faster ?

My current configs for Checkpoints
state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes


some metadata about the checkpoint
{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}

results(18).svg (74K) Download Attachment
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

Yun Tang
Hi Slim

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).
If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.
Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.


Best
Yun Tang

From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.
 

Originally posed to the dev list
---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>


Hi Devs,
I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )
When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.
I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)
As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))
Now the question is why this metadata file is so big in the order of 3GBs in my case.
How does this size scale ? num_of_tasks * num_states ?

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm
Is there a config flag I am missing to make this last step faster ?

My current configs for Checkpoints
state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes


some metadata about the checkpoint
{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

Slim Bouguerra
Hi Yun,
Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout
Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?
IF that is the case is there a way to exclude the source operators from the checkpoints ?
Thanks
Please find the attached logs:
1 I checked the shared folder and it has the shared operator state.
2 I did set the value of fs-memory-threshold to 1kb

This the source of the SQL testing job

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

---------------------------------------
With more debugging I see this exception stack on the job manager
java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

----------------------------------------------
And sometime the JM dies with this OOM
 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]


On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:
Hi Slim

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).
If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.
Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.


Best
Yun Tang

From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.
 

Originally posed to the dev list
---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>


Hi Devs,
I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )
When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.
I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)
As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))
Now the question is why this metadata file is so big in the order of 3GBs in my case.
How does this size scale ? num_of_tasks * num_states ?

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm
Is there a config flag I am missing to make this last step faster ?

My current configs for Checkpoints
state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes


some metadata about the checkpoint
{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______

flink--standalonesession-0-sbouguer-flink-jobmanager-844d56b594-lm62t.log (610K) Download Attachment
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

Yun Tang
In reply to this post by Slim Bouguerra-2
Hi Slim

Have you ever checked whether the job is on backpressure during the checkpoint, and you could check the checkpoint details via web UI [1] to see the duration of sync & async phase.

BTW, I cannot see the "IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.  " in attached log, and I don't understand why you could have such large state after you already set the 'state.backend.fs.memory-threshold' as 1024, please provide more checkpoint details which reported in web UI.


Best
Yun Tang

From: Slim Bouguerra <[hidden email]>
Sent: Thursday, November 19, 2020 7:56
To: Yun Tang <[hidden email]>
Cc: [hidden email] <[hidden email]>
Subject: Re: Job Manager is taking very long time to finalize the Checkpointing.
 
Hi Yun,
Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout
Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?
IF that is the case is there a way to exclude the source operators from the checkpoints ?
Thanks
Please find the attached logs:
1 I checked the shared folder and it has the shared operator state.
2 I did set the value of fs-memory-threshold to 1kb

This the source of the SQL testing job

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

---------------------------------------
With more debugging I see this exception stack on the job manager
java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

----------------------------------------------
And sometime the JM dies with this OOM
 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]


On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:
Hi Slim

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).
If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.
Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.


Best
Yun Tang

From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.
 

Originally posed to the dev list
---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>


Hi Devs,
I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )
When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.
I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)
As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))
Now the question is why this metadata file is so big in the order of 3GBs in my case.
How does this size scale ? num_of_tasks * num_states ?

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm
Is there a config flag I am missing to make this last step faster ?

My current configs for Checkpoints
state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes


some metadata about the checkpoint
{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

Arvid Heise-3
In reply to this post by Slim Bouguerra
Hi Slim,

for your initial question concerning the size of _metadata. When Flink writes the checkpoint, it assumes some kind of DFS. Pretty much all known DFS implementations behave poorly for many small files. If you run a job with 5 tasks and parallelism of 120, then you'd get 600 small checkpoint files (or more depending on the configuration).

To solve it, Flink combines very small files into the _metadata according to some threshold [1]. These small files can quickly add up though. You can disable that behavior by setting the threshold to 0.


On Thu, Nov 19, 2020 at 12:57 AM Slim Bouguerra <[hidden email]> wrote:
Hi Yun,
Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout
Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?
IF that is the case is there a way to exclude the source operators from the checkpoints ?
Thanks
Please find the attached logs:
1 I checked the shared folder and it has the shared operator state.
2 I did set the value of fs-memory-threshold to 1kb

This the source of the SQL testing job

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

---------------------------------------
With more debugging I see this exception stack on the job manager
java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

----------------------------------------------
And sometime the JM dies with this OOM
 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]


On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:
Hi Slim

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).
If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.
Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.


Best
Yun Tang

From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.
 

Originally posed to the dev list
---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>


Hi Devs,
I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )
When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.
I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)
As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))
Now the question is why this metadata file is so big in the order of 3GBs in my case.
How does this size scale ? num_of_tasks * num_states ?

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm
Is there a config flag I am missing to make this last step faster ?

My current configs for Checkpoints
state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes


some metadata about the checkpoint
{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______


--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

Slim Bouguerra
@Arvid thanks will try that, The NFS server I am using should be able to have TP. In my observation the Serde is taking most of the CPU.

Please find the logs also what are your thoughts? about Source Task Data Gen is causing this aka pusing the checkpoint to JM instead of filesystem ?

On Thu, Nov 19, 2020 at 11:20 AM Arvid Heise <[hidden email]> wrote:
Hi Slim,

for your initial question concerning the size of _metadata. When Flink writes the checkpoint, it assumes some kind of DFS. Pretty much all known DFS implementations behave poorly for many small files. If you run a job with 5 tasks and parallelism of 120, then you'd get 600 small checkpoint files (or more depending on the configuration).

To solve it, Flink combines very small files into the _metadata according to some threshold [1]. These small files can quickly add up though. You can disable that behavior by setting the threshold to 0.


On Thu, Nov 19, 2020 at 12:57 AM Slim Bouguerra <[hidden email]> wrote:
Hi Yun,
Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout
Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?
IF that is the case is there a way to exclude the source operators from the checkpoints ?
Thanks
Please find the attached logs:
1 I checked the shared folder and it has the shared operator state.
2 I did set the value of fs-memory-threshold to 1kb

This the source of the SQL testing job

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

---------------------------------------
With more debugging I see this exception stack on the job manager
java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

----------------------------------------------
And sometime the JM dies with this OOM
 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]


On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:
Hi Slim

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).
If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.
Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.


Best
Yun Tang

From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.
 

Originally posed to the dev list
---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>


Hi Devs,
I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )
When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.
I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)
As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))
Now the question is why this metadata file is so big in the order of 3GBs in my case.
How does this size scale ? num_of_tasks * num_states ?

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm
Is there a config flag I am missing to make this last step faster ?

My current configs for Checkpoints
state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes


some metadata about the checkpoint
{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______


--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

Slim Bouguerra
sorry forgot to attach the screenshot
print_screen_checkpoint.png


On Thu, Nov 19, 2020 at 12:55 PM Slim Bouguerra <[hidden email]> wrote:
@Arvid thanks will try that, The NFS server I am using should be able to have TP. In my observation the Serde is taking most of the CPU.

Please find the logs also what are your thoughts? about Source Task Data Gen is causing this aka pusing the checkpoint to JM instead of filesystem ?

On Thu, Nov 19, 2020 at 11:20 AM Arvid Heise <[hidden email]> wrote:
Hi Slim,

for your initial question concerning the size of _metadata. When Flink writes the checkpoint, it assumes some kind of DFS. Pretty much all known DFS implementations behave poorly for many small files. If you run a job with 5 tasks and parallelism of 120, then you'd get 600 small checkpoint files (or more depending on the configuration).

To solve it, Flink combines very small files into the _metadata according to some threshold [1]. These small files can quickly add up though. You can disable that behavior by setting the threshold to 0.


On Thu, Nov 19, 2020 at 12:57 AM Slim Bouguerra <[hidden email]> wrote:
Hi Yun,
Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout
Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?
IF that is the case is there a way to exclude the source operators from the checkpoints ?
Thanks
Please find the attached logs:
1 I checked the shared folder and it has the shared operator state.
2 I did set the value of fs-memory-threshold to 1kb

This the source of the SQL testing job

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

---------------------------------------
With more debugging I see this exception stack on the job manager
java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

----------------------------------------------
And sometime the JM dies with this OOM
 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]


On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:
Hi Slim

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).
If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.
Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.


Best
Yun Tang

From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.
 

Originally posed to the dev list
---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>


Hi Devs,
I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )
When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.
I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)
As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))
Now the question is why this metadata file is so big in the order of 3GBs in my case.
How does this size scale ? num_of_tasks * num_states ?

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm
Is there a config flag I am missing to make this last step faster ?

My current configs for Checkpoints
state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes


some metadata about the checkpoint
{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______


--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

Yun Tang

Hi Slim

 

The duration of checkpoint increases due to your checkpoint size increases (from 19GB to 110GB+). I think you could click the details in the ‘interval join’ operator to see the duration and trigger time of different tasks. And the end-to-end duration of checkpoint matches as the checkpointed data size. And did you still have the problem of very large _metadata?

BTW, what I want is the JM and TM logs in detail instead of several lines of exception to see what’s your job status.

 

Best

Yun Tang

 

From: Slim Bouguerra <[hidden email]>
Date: Friday, November 20, 2020 at 5:02 AM
To: Arvid Heise <[hidden email]>
Cc: Yun Tang <[hidden email]>, "[hidden email]" <[hidden email]>
Subject: Re: Job Manager is taking very long time to finalize the Checkpointing.

 

sorry forgot to attach the screenshot

 

On Thu, Nov 19, 2020 at 12:55 PM Slim Bouguerra <[hidden email]> wrote:

@Arvid thanks will try that, The NFS server I am using should be able to have TP. In my observation the Serde is taking most of the CPU.

 

Please find the logs also what are your thoughts? about Source Task Data Gen is causing this aka pusing the checkpoint to JM instead of filesystem ?

 

On Thu, Nov 19, 2020 at 11:20 AM Arvid Heise <[hidden email]> wrote:

Hi Slim,

 

for your initial question concerning the size of _metadata. When Flink writes the checkpoint, it assumes some kind of DFS. Pretty much all known DFS implementations behave poorly for many small files. If you run a job with 5 tasks and parallelism of 120, then you'd get 600 small checkpoint files (or more depending on the configuration).

 

To solve it, Flink combines very small files into the _metadata according to some threshold [1]. These small files can quickly add up though. You can disable that behavior by setting the threshold to 0.

 

 

On Thu, Nov 19, 2020 at 12:57 AM Slim Bouguerra <[hidden email]> wrote:

Hi Yun,

Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout

Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?

IF that is the case is there a way to exclude the source operators from the checkpoints ?

Thanks

Please find the attached logs:

1 I checked the shared folder and it has the shared operator state.

2 I did set the value of fs-memory-threshold to 1kb

 

This the source of the SQL testing job

 

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

 

---------------------------------------

With more debugging I see this exception stack on the job manager

java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

 

----------------------------------------------

And sometime the JM dies with this OOM

 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]

 

 

On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).

If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.

Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.

 

 

Best

Yun Tang


From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.

 

 

Originally posed to the dev list

---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>

 

Hi Devs,

I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

 

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )

When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.

I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)

As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))

Now the question is why this metadata file is so big in the order of 3GBs in my case.

How does this size scale ? num_of_tasks * num_states ?

 

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

 

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm

Is there a config flag I am missing to make this last step faster ?

 

My current configs for Checkpoints

state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes

 

 

some metadata about the checkpoint

{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer

 

Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______

Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

Arvid Heise-3
It's not surprising that most of the time is spent in serialization. That's also true for most network traffic.

Could you check if there are subtasks that produce much more data than others? It would hint at a data skew, where some subtask just take much longer and everything else is waiting on them (in terms of checkpointing, but often also in terms of processing).

On Fri, Nov 20, 2020 at 7:15 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

The duration of checkpoint increases due to your checkpoint size increases (from 19GB to 110GB+). I think you could click the details in the ‘interval join’ operator to see the duration and trigger time of different tasks. And the end-to-end duration of checkpoint matches as the checkpointed data size. And did you still have the problem of very large _metadata?

BTW, what I want is the JM and TM logs in detail instead of several lines of exception to see what’s your job status.

 

Best

Yun Tang

 

From: Slim Bouguerra <[hidden email]>
Date: Friday, November 20, 2020 at 5:02 AM
To: Arvid Heise <[hidden email]>
Cc: Yun Tang <[hidden email]>, "[hidden email]" <[hidden email]>
Subject: Re: Job Manager is taking very long time to finalize the Checkpointing.

 

sorry forgot to attach the screenshot

 

On Thu, Nov 19, 2020 at 12:55 PM Slim Bouguerra <[hidden email]> wrote:

@Arvid thanks will try that, The NFS server I am using should be able to have TP. In my observation the Serde is taking most of the CPU.

 

Please find the logs also what are your thoughts? about Source Task Data Gen is causing this aka pusing the checkpoint to JM instead of filesystem ?

 

On Thu, Nov 19, 2020 at 11:20 AM Arvid Heise <[hidden email]> wrote:

Hi Slim,

 

for your initial question concerning the size of _metadata. When Flink writes the checkpoint, it assumes some kind of DFS. Pretty much all known DFS implementations behave poorly for many small files. If you run a job with 5 tasks and parallelism of 120, then you'd get 600 small checkpoint files (or more depending on the configuration).

 

To solve it, Flink combines very small files into the _metadata according to some threshold [1]. These small files can quickly add up though. You can disable that behavior by setting the threshold to 0.

 

 

On Thu, Nov 19, 2020 at 12:57 AM Slim Bouguerra <[hidden email]> wrote:

Hi Yun,

Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout

Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?

IF that is the case is there a way to exclude the source operators from the checkpoints ?

Thanks

Please find the attached logs:

1 I checked the shared folder and it has the shared operator state.

2 I did set the value of fs-memory-threshold to 1kb

 

This the source of the SQL testing job

 

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

 

---------------------------------------

With more debugging I see this exception stack on the job manager

java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

 

----------------------------------------------

And sometime the JM dies with this OOM

 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]

 

 

On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).

If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.

Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.

 

 

Best

Yun Tang


From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.

 

 

Originally posed to the dev list

---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>

 

Hi Devs,

I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

 

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )

When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.

I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)

As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))

Now the question is why this metadata file is so big in the order of 3GBs in my case.

How does this size scale ? num_of_tasks * num_states ?

 

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

 

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm

Is there a config flag I am missing to make this last step faster ?

 

My current configs for Checkpoints

state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes

 

 

some metadata about the checkpoint

{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer

Image removed by sender.

 

Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

Slim Bouguerra

Hi All, again thanks for the help.
Please find attached all the logs of 8 workers and JM.
To validate my guess about the source task causing the slow checkpointing and akka frame size issue.
I have lowered akka max frame size to 2MB and I Found out that now the source task is not able to do the checkpoint as you can see by the screenshot and the logs of TM that are running the source task like sbouguer-flink-taskmanager-6ddbf4484b-k7k8j
Please let me know if that analysis makes sense ?
If it is the source task that is based on SQL data generator connector is there a way to turn off the checkpoint for such tasks ?
Thanks for all the help

On Thu, Nov 19, 2020 at 11:02 PM Arvid Heise <[hidden email]> wrote:
It's not surprising that most of the time is spent in serialization. That's also true for most network traffic.

Could you check if there are subtasks that produce much more data than others? It would hint at a data skew, where some subtask just take much longer and everything else is waiting on them (in terms of checkpointing, but often also in terms of processing).

On Fri, Nov 20, 2020 at 7:15 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

The duration of checkpoint increases due to your checkpoint size increases (from 19GB to 110GB+). I think you could click the details in the ‘interval join’ operator to see the duration and trigger time of different tasks. And the end-to-end duration of checkpoint matches as the checkpointed data size. And did you still have the problem of very large _metadata?

BTW, what I want is the JM and TM logs in detail instead of several lines of exception to see what’s your job status.

 

Best

Yun Tang

 

From: Slim Bouguerra <[hidden email]>
Date: Friday, November 20, 2020 at 5:02 AM
To: Arvid Heise <[hidden email]>
Cc: Yun Tang <[hidden email]>, "[hidden email]" <[hidden email]>
Subject: Re: Job Manager is taking very long time to finalize the Checkpointing.

 

sorry forgot to attach the screenshot

 

On Thu, Nov 19, 2020 at 12:55 PM Slim Bouguerra <[hidden email]> wrote:

@Arvid thanks will try that, The NFS server I am using should be able to have TP. In my observation the Serde is taking most of the CPU.

 

Please find the logs also what are your thoughts? about Source Task Data Gen is causing this aka pusing the checkpoint to JM instead of filesystem ?

 

On Thu, Nov 19, 2020 at 11:20 AM Arvid Heise <[hidden email]> wrote:

Hi Slim,

 

for your initial question concerning the size of _metadata. When Flink writes the checkpoint, it assumes some kind of DFS. Pretty much all known DFS implementations behave poorly for many small files. If you run a job with 5 tasks and parallelism of 120, then you'd get 600 small checkpoint files (or more depending on the configuration).

 

To solve it, Flink combines very small files into the _metadata according to some threshold [1]. These small files can quickly add up though. You can disable that behavior by setting the threshold to 0.

 

 

On Thu, Nov 19, 2020 at 12:57 AM Slim Bouguerra <[hidden email]> wrote:

Hi Yun,

Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout

Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?

IF that is the case is there a way to exclude the source operators from the checkpoints ?

Thanks

Please find the attached logs:

1 I checked the shared folder and it has the shared operator state.

2 I did set the value of fs-memory-threshold to 1kb

 

This the source of the SQL testing job

 

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

 

---------------------------------------

With more debugging I see this exception stack on the job manager

java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

 

----------------------------------------------

And sometime the JM dies with this OOM

 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]

 

 

On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).

If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.

Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.

 

 

Best

Yun Tang


From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.

 

 

Originally posed to the dev list

---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>

 

Hi Devs,

I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

 

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )

When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.

I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)

As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))

Now the question is why this metadata file is so big in the order of 3GBs in my case.

How does this size scale ? num_of_tasks * num_states ?

 

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

 

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm

Is there a config flag I am missing to make this last step faster ?

 

My current configs for Checkpoints

state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes

 

 

some metadata about the checkpoint

{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer

Image removed by sender.

 

Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______

jm_outfile_job_5_20_11_2020T09-51-25.log (460K) Download Attachment
sbouguer-flink-taskmanager-6ddbf4484b-7swn2.log (415K) Download Attachment
sbouguer-flink-taskmanager-6ddbf4484b-9kcl5.log (398K) Download Attachment
sbouguer-flink-taskmanager-6ddbf4484b-957sw.log (392K) Download Attachment
sbouguer-flink-taskmanager-6ddbf4484b-7vzrn.log (373K) Download Attachment
sbouguer-flink-taskmanager-6ddbf4484b-gdtb6.log (370K) Download Attachment
sbouguer-flink-taskmanager-6ddbf4484b-k7k8j.log (393K) Download Attachment
sbouguer-flink-taskmanager-6ddbf4484b-qrcwm.log (416K) Download Attachment
sbouguer-flink-taskmanager-6ddbf4484b-lcc5h.log (373K) Download Attachment
Screen Shot 2020-11-20 at 10.34.40 AM.png (1M) Download Attachment
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

Arvid Heise-3
Hi Slim,

this looks indeed weird. The message that is sent over akka should contain only metadata about the state. I'm not exactly sure if the inlined state as mentioned before is also sent over akka. I'm pulling Roman who probably knows the answer.

Unfortunately, the logs are almost impossible to interpret as you didn't add the thread names (which contain the task name). Maybe you could use the standard logger for these experiments, so it's easier for us to "parse"?

There is no way to turn off checkpointing for a particular task - the checkpoint is meant to be a consistent state across all operators to a given point in time. However, if the source is a generator, the state size should only be a couple of bytes. Which generator are you using specifically?

In any case, could you please also set state.backend.fs.memory-threshold to 0 b (=disable state inlining) and report back?

On Fri, Nov 20, 2020 at 8:12 PM Slim Bouguerra <[hidden email]> wrote:

Hi All, again thanks for the help.
Please find attached all the logs of 8 workers and JM.
To validate my guess about the source task causing the slow checkpointing and akka frame size issue.
I have lowered akka max frame size to 2MB and I Found out that now the source task is not able to do the checkpoint as you can see by the screenshot and the logs of TM that are running the source task like sbouguer-flink-taskmanager-6ddbf4484b-k7k8j
Please let me know if that analysis makes sense ?
If it is the source task that is based on SQL data generator connector is there a way to turn off the checkpoint for such tasks ?
Thanks for all the help

On Thu, Nov 19, 2020 at 11:02 PM Arvid Heise <[hidden email]> wrote:
It's not surprising that most of the time is spent in serialization. That's also true for most network traffic.

Could you check if there are subtasks that produce much more data than others? It would hint at a data skew, where some subtask just take much longer and everything else is waiting on them (in terms of checkpointing, but often also in terms of processing).

On Fri, Nov 20, 2020 at 7:15 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

The duration of checkpoint increases due to your checkpoint size increases (from 19GB to 110GB+). I think you could click the details in the ‘interval join’ operator to see the duration and trigger time of different tasks. And the end-to-end duration of checkpoint matches as the checkpointed data size. And did you still have the problem of very large _metadata?

BTW, what I want is the JM and TM logs in detail instead of several lines of exception to see what’s your job status.

 

Best

Yun Tang

 

From: Slim Bouguerra <[hidden email]>
Date: Friday, November 20, 2020 at 5:02 AM
To: Arvid Heise <[hidden email]>
Cc: Yun Tang <[hidden email]>, "[hidden email]" <[hidden email]>
Subject: Re: Job Manager is taking very long time to finalize the Checkpointing.

 

sorry forgot to attach the screenshot

 

On Thu, Nov 19, 2020 at 12:55 PM Slim Bouguerra <[hidden email]> wrote:

@Arvid thanks will try that, The NFS server I am using should be able to have TP. In my observation the Serde is taking most of the CPU.

 

Please find the logs also what are your thoughts? about Source Task Data Gen is causing this aka pusing the checkpoint to JM instead of filesystem ?

 

On Thu, Nov 19, 2020 at 11:20 AM Arvid Heise <[hidden email]> wrote:

Hi Slim,

 

for your initial question concerning the size of _metadata. When Flink writes the checkpoint, it assumes some kind of DFS. Pretty much all known DFS implementations behave poorly for many small files. If you run a job with 5 tasks and parallelism of 120, then you'd get 600 small checkpoint files (or more depending on the configuration).

 

To solve it, Flink combines very small files into the _metadata according to some threshold [1]. These small files can quickly add up though. You can disable that behavior by setting the threshold to 0.

 

 

On Thu, Nov 19, 2020 at 12:57 AM Slim Bouguerra <[hidden email]> wrote:

Hi Yun,

Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout

Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?

IF that is the case is there a way to exclude the source operators from the checkpoints ?

Thanks

Please find the attached logs:

1 I checked the shared folder and it has the shared operator state.

2 I did set the value of fs-memory-threshold to 1kb

 

This the source of the SQL testing job

 

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

 

---------------------------------------

With more debugging I see this exception stack on the job manager

java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

 

----------------------------------------------

And sometime the JM dies with this OOM

 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]

 

 

On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).

If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.

Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.

 

 

Best

Yun Tang


From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.

 

 

Originally posed to the dev list

---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>

 

Hi Devs,

I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

 

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )

When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.

I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)

As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))

Now the question is why this metadata file is so big in the order of 3GBs in my case.

How does this size scale ? num_of_tasks * num_states ?

 

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

 

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm

Is there a config flag I am missing to make this last step faster ?

 

My current configs for Checkpoints

state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes

 

 

some metadata about the checkpoint

{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer

Image removed by sender.

 

Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______


--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

r_khachatryan
Hi,

Exceeding akka framesize in this setup is expected because state.backend.fs.memory-threshold is enforced per state backend (operator).
So I think it makes sense to check the behavior with state.backend.fs.memory-threshold=0 as suggested above.

Additionally, persisting channel state can account for this size. But, in your setup, unaligned checkpoints are disabled, right?

Regards,
Roman


On Fri, Nov 20, 2020 at 8:55 PM Arvid Heise <[hidden email]> wrote:
Hi Slim,

this looks indeed weird. The message that is sent over akka should contain only metadata about the state. I'm not exactly sure if the inlined state as mentioned before is also sent over akka. I'm pulling Roman who probably knows the answer.

Unfortunately, the logs are almost impossible to interpret as you didn't add the thread names (which contain the task name). Maybe you could use the standard logger for these experiments, so it's easier for us to "parse"?

There is no way to turn off checkpointing for a particular task - the checkpoint is meant to be a consistent state across all operators to a given point in time. However, if the source is a generator, the state size should only be a couple of bytes. Which generator are you using specifically?

In any case, could you please also set state.backend.fs.memory-threshold to 0 b (=disable state inlining) and report back?

On Fri, Nov 20, 2020 at 8:12 PM Slim Bouguerra <[hidden email]> wrote:

Hi All, again thanks for the help.
Please find attached all the logs of 8 workers and JM.
To validate my guess about the source task causing the slow checkpointing and akka frame size issue.
I have lowered akka max frame size to 2MB and I Found out that now the source task is not able to do the checkpoint as you can see by the screenshot and the logs of TM that are running the source task like sbouguer-flink-taskmanager-6ddbf4484b-k7k8j
Please let me know if that analysis makes sense ?
If it is the source task that is based on SQL data generator connector is there a way to turn off the checkpoint for such tasks ?
Thanks for all the help

On Thu, Nov 19, 2020 at 11:02 PM Arvid Heise <[hidden email]> wrote:
It's not surprising that most of the time is spent in serialization. That's also true for most network traffic.

Could you check if there are subtasks that produce much more data than others? It would hint at a data skew, where some subtask just take much longer and everything else is waiting on them (in terms of checkpointing, but often also in terms of processing).

On Fri, Nov 20, 2020 at 7:15 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

The duration of checkpoint increases due to your checkpoint size increases (from 19GB to 110GB+). I think you could click the details in the ‘interval join’ operator to see the duration and trigger time of different tasks. And the end-to-end duration of checkpoint matches as the checkpointed data size. And did you still have the problem of very large _metadata?

BTW, what I want is the JM and TM logs in detail instead of several lines of exception to see what’s your job status.

 

Best

Yun Tang

 

From: Slim Bouguerra <[hidden email]>
Date: Friday, November 20, 2020 at 5:02 AM
To: Arvid Heise <[hidden email]>
Cc: Yun Tang <[hidden email]>, "[hidden email]" <[hidden email]>
Subject: Re: Job Manager is taking very long time to finalize the Checkpointing.

 

sorry forgot to attach the screenshot

 

On Thu, Nov 19, 2020 at 12:55 PM Slim Bouguerra <[hidden email]> wrote:

@Arvid thanks will try that, The NFS server I am using should be able to have TP. In my observation the Serde is taking most of the CPU.

 

Please find the logs also what are your thoughts? about Source Task Data Gen is causing this aka pusing the checkpoint to JM instead of filesystem ?

 

On Thu, Nov 19, 2020 at 11:20 AM Arvid Heise <[hidden email]> wrote:

Hi Slim,

 

for your initial question concerning the size of _metadata. When Flink writes the checkpoint, it assumes some kind of DFS. Pretty much all known DFS implementations behave poorly for many small files. If you run a job with 5 tasks and parallelism of 120, then you'd get 600 small checkpoint files (or more depending on the configuration).

 

To solve it, Flink combines very small files into the _metadata according to some threshold [1]. These small files can quickly add up though. You can disable that behavior by setting the threshold to 0.

 

 

On Thu, Nov 19, 2020 at 12:57 AM Slim Bouguerra <[hidden email]> wrote:

Hi Yun,

Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout

Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?

IF that is the case is there a way to exclude the source operators from the checkpoints ?

Thanks

Please find the attached logs:

1 I checked the shared folder and it has the shared operator state.

2 I did set the value of fs-memory-threshold to 1kb

 

This the source of the SQL testing job

 

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

 

---------------------------------------

With more debugging I see this exception stack on the job manager

java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

 

----------------------------------------------

And sometime the JM dies with this OOM

 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]

 

 

On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).

If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.

Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.

 

 

Best

Yun Tang


From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.

 

 

Originally posed to the dev list

---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>

 

Hi Devs,

I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

 

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )

When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.

I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)

As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))

Now the question is why this metadata file is so big in the order of 3GBs in my case.

How does this size scale ? num_of_tasks * num_states ?

 

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

 

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm

Is there a config flag I am missing to make this last step faster ?

 

My current configs for Checkpoints

state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes

 

 

some metadata about the checkpoint

{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer

Image removed by sender.

 

Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______


--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

Slim Bouguerra
Hi Khachatryan Yes I am not using the unaligned checkpoint Also I observed the same issue when I set the fault tolerance strategy to at_least_once.
Again this brings me back to the original assumption that is the source task causing this issue.
Any idea on how to monitor the amount of data sent by an operator to the job manager vs amount persisted on the Distributed file system ?

On Mon, Nov 23, 2020 at 2:41 AM Khachatryan Roman <[hidden email]> wrote:
Hi,

Exceeding akka framesize in this setup is expected because state.backend.fs.memory-threshold is enforced per state backend (operator).
So I think it makes sense to check the behavior with state.backend.fs.memory-threshold=0 as suggested above.

Additionally, persisting channel state can account for this size. But, in your setup, unaligned checkpoints are disabled, right?

Regards,
Roman


On Fri, Nov 20, 2020 at 8:55 PM Arvid Heise <[hidden email]> wrote:
Hi Slim,

this looks indeed weird. The message that is sent over akka should contain only metadata about the state. I'm not exactly sure if the inlined state as mentioned before is also sent over akka. I'm pulling Roman who probably knows the answer.

Unfortunately, the logs are almost impossible to interpret as you didn't add the thread names (which contain the task name). Maybe you could use the standard logger for these experiments, so it's easier for us to "parse"?

There is no way to turn off checkpointing for a particular task - the checkpoint is meant to be a consistent state across all operators to a given point in time. However, if the source is a generator, the state size should only be a couple of bytes. Which generator are you using specifically?

In any case, could you please also set state.backend.fs.memory-threshold to 0 b (=disable state inlining) and report back?

On Fri, Nov 20, 2020 at 8:12 PM Slim Bouguerra <[hidden email]> wrote:

Hi All, again thanks for the help.
Please find attached all the logs of 8 workers and JM.
To validate my guess about the source task causing the slow checkpointing and akka frame size issue.
I have lowered akka max frame size to 2MB and I Found out that now the source task is not able to do the checkpoint as you can see by the screenshot and the logs of TM that are running the source task like sbouguer-flink-taskmanager-6ddbf4484b-k7k8j
Please let me know if that analysis makes sense ?
If it is the source task that is based on SQL data generator connector is there a way to turn off the checkpoint for such tasks ?
Thanks for all the help

On Thu, Nov 19, 2020 at 11:02 PM Arvid Heise <[hidden email]> wrote:
It's not surprising that most of the time is spent in serialization. That's also true for most network traffic.

Could you check if there are subtasks that produce much more data than others? It would hint at a data skew, where some subtask just take much longer and everything else is waiting on them (in terms of checkpointing, but often also in terms of processing).

On Fri, Nov 20, 2020 at 7:15 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

The duration of checkpoint increases due to your checkpoint size increases (from 19GB to 110GB+). I think you could click the details in the ‘interval join’ operator to see the duration and trigger time of different tasks. And the end-to-end duration of checkpoint matches as the checkpointed data size. And did you still have the problem of very large _metadata?

BTW, what I want is the JM and TM logs in detail instead of several lines of exception to see what’s your job status.

 

Best

Yun Tang

 

From: Slim Bouguerra <[hidden email]>
Date: Friday, November 20, 2020 at 5:02 AM
To: Arvid Heise <[hidden email]>
Cc: Yun Tang <[hidden email]>, "[hidden email]" <[hidden email]>
Subject: Re: Job Manager is taking very long time to finalize the Checkpointing.

 

sorry forgot to attach the screenshot

 

On Thu, Nov 19, 2020 at 12:55 PM Slim Bouguerra <[hidden email]> wrote:

@Arvid thanks will try that, The NFS server I am using should be able to have TP. In my observation the Serde is taking most of the CPU.

 

Please find the logs also what are your thoughts? about Source Task Data Gen is causing this aka pusing the checkpoint to JM instead of filesystem ?

 

On Thu, Nov 19, 2020 at 11:20 AM Arvid Heise <[hidden email]> wrote:

Hi Slim,

 

for your initial question concerning the size of _metadata. When Flink writes the checkpoint, it assumes some kind of DFS. Pretty much all known DFS implementations behave poorly for many small files. If you run a job with 5 tasks and parallelism of 120, then you'd get 600 small checkpoint files (or more depending on the configuration).

 

To solve it, Flink combines very small files into the _metadata according to some threshold [1]. These small files can quickly add up though. You can disable that behavior by setting the threshold to 0.

 

 

On Thu, Nov 19, 2020 at 12:57 AM Slim Bouguerra <[hidden email]> wrote:

Hi Yun,

Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout

Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?

IF that is the case is there a way to exclude the source operators from the checkpoints ?

Thanks

Please find the attached logs:

1 I checked the shared folder and it has the shared operator state.

2 I did set the value of fs-memory-threshold to 1kb

 

This the source of the SQL testing job

 

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

 

---------------------------------------

With more debugging I see this exception stack on the job manager

java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

 

----------------------------------------------

And sometime the JM dies with this OOM

 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]

 

 

On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).

If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.

Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.

 

 

Best

Yun Tang


From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.

 

 

Originally posed to the dev list

---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>

 

Hi Devs,

I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

 

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )

When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.

I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)

As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))

Now the question is why this metadata file is so big in the order of 3GBs in my case.

How does this size scale ? num_of_tasks * num_states ?

 

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

 

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm

Is there a config flag I am missing to make this last step faster ?

 

My current configs for Checkpoints

state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes

 

 

some metadata about the checkpoint

{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer

Image removed by sender.

 

Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______


--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______
Reply | Threaded
Open this post in threaded view
|

Re: Job Manager is taking very long time to finalize the Checkpointing.

r_khachatryan
Hi Slim Bouguerra,

It is not possible to see the breakdown of (incomplete) _metadata contents. But from your logs, I see that most of them indeed try to send around 100Mb. With the DOP=24 (from your screenshot) it roughly amounts to 2.4Gb. With other operators and state handles it can reach 3Gb.

But, you can see the breakdown per operator-subtask by inspecting the files. For that, you need to completely disable inlining the state into the metadata as suggested above. That would also isolate the problem and provide a workaround.

Another option I can think of is State Processor API [1], but for that, you need a completed checkpoint.

[1]

Regards,
Roman


On Tue, Dec 1, 2020 at 6:19 PM Slim Bouguerra <[hidden email]> wrote:
Hi Khachatryan Yes I am not using the unaligned checkpoint Also I observed the same issue when I set the fault tolerance strategy to at_least_once.
Again this brings me back to the original assumption that is the source task causing this issue.
Any idea on how to monitor the amount of data sent by an operator to the job manager vs amount persisted on the Distributed file system ?

On Mon, Nov 23, 2020 at 2:41 AM Khachatryan Roman <[hidden email]> wrote:
Hi,

Exceeding akka framesize in this setup is expected because state.backend.fs.memory-threshold is enforced per state backend (operator).
So I think it makes sense to check the behavior with state.backend.fs.memory-threshold=0 as suggested above.

Additionally, persisting channel state can account for this size. But, in your setup, unaligned checkpoints are disabled, right?

Regards,
Roman


On Fri, Nov 20, 2020 at 8:55 PM Arvid Heise <[hidden email]> wrote:
Hi Slim,

this looks indeed weird. The message that is sent over akka should contain only metadata about the state. I'm not exactly sure if the inlined state as mentioned before is also sent over akka. I'm pulling Roman who probably knows the answer.

Unfortunately, the logs are almost impossible to interpret as you didn't add the thread names (which contain the task name). Maybe you could use the standard logger for these experiments, so it's easier for us to "parse"?

There is no way to turn off checkpointing for a particular task - the checkpoint is meant to be a consistent state across all operators to a given point in time. However, if the source is a generator, the state size should only be a couple of bytes. Which generator are you using specifically?

In any case, could you please also set state.backend.fs.memory-threshold to 0 b (=disable state inlining) and report back?

On Fri, Nov 20, 2020 at 8:12 PM Slim Bouguerra <[hidden email]> wrote:

Hi All, again thanks for the help.
Please find attached all the logs of 8 workers and JM.
To validate my guess about the source task causing the slow checkpointing and akka frame size issue.
I have lowered akka max frame size to 2MB and I Found out that now the source task is not able to do the checkpoint as you can see by the screenshot and the logs of TM that are running the source task like sbouguer-flink-taskmanager-6ddbf4484b-k7k8j
Please let me know if that analysis makes sense ?
If it is the source task that is based on SQL data generator connector is there a way to turn off the checkpoint for such tasks ?
Thanks for all the help

On Thu, Nov 19, 2020 at 11:02 PM Arvid Heise <[hidden email]> wrote:
It's not surprising that most of the time is spent in serialization. That's also true for most network traffic.

Could you check if there are subtasks that produce much more data than others? It would hint at a data skew, where some subtask just take much longer and everything else is waiting on them (in terms of checkpointing, but often also in terms of processing).

On Fri, Nov 20, 2020 at 7:15 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

The duration of checkpoint increases due to your checkpoint size increases (from 19GB to 110GB+). I think you could click the details in the ‘interval join’ operator to see the duration and trigger time of different tasks. And the end-to-end duration of checkpoint matches as the checkpointed data size. And did you still have the problem of very large _metadata?

BTW, what I want is the JM and TM logs in detail instead of several lines of exception to see what’s your job status.

 

Best

Yun Tang

 

From: Slim Bouguerra <[hidden email]>
Date: Friday, November 20, 2020 at 5:02 AM
To: Arvid Heise <[hidden email]>
Cc: Yun Tang <[hidden email]>, "[hidden email]" <[hidden email]>
Subject: Re: Job Manager is taking very long time to finalize the Checkpointing.

 

sorry forgot to attach the screenshot

 

On Thu, Nov 19, 2020 at 12:55 PM Slim Bouguerra <[hidden email]> wrote:

@Arvid thanks will try that, The NFS server I am using should be able to have TP. In my observation the Serde is taking most of the CPU.

 

Please find the logs also what are your thoughts? about Source Task Data Gen is causing this aka pusing the checkpoint to JM instead of filesystem ?

 

On Thu, Nov 19, 2020 at 11:20 AM Arvid Heise <[hidden email]> wrote:

Hi Slim,

 

for your initial question concerning the size of _metadata. When Flink writes the checkpoint, it assumes some kind of DFS. Pretty much all known DFS implementations behave poorly for many small files. If you run a job with 5 tasks and parallelism of 120, then you'd get 600 small checkpoint files (or more depending on the configuration).

 

To solve it, Flink combines very small files into the _metadata according to some threshold [1]. These small files can quickly add up though. You can disable that behavior by setting the threshold to 0.

 

 

On Thu, Nov 19, 2020 at 12:57 AM Slim Bouguerra <[hidden email]> wrote:

Hi Yun,

Thanks for the help after applying your recommendation, I am getting the same issue aka very long checkpoints and then timeout

Now My guess is maybe the datagen source is pushing the checkpoint via the network to JM is there a way to double check?

IF that is the case is there a way to exclude the source operators from the checkpoints ?

Thanks

Please find the attached logs:

1 I checked the shared folder and it has the shared operator state.

2 I did set the value of fs-memory-threshold to 1kb

 

This the source of the SQL testing job

 

CREATE TABLE datagen (
                          f_sequence INT,
                          f_random INT,
                          f_random_str STRING,
                          f_random_str_4 STRING,
                          f_random_str_3 STRING,
                          f_random_str_2 STRING,
                          f_random_str_1 STRING,
                          ts AS localtimestamp,
                          WATERMARK FOR ts AS ts
) WITH (
      'connector' = 'datagen',
      -- optional options --
      'rows-per-second'='500000',
      'fields.f_sequence.kind'='sequence',
      'fields.f_sequence.start'='1',
      'fields.f_sequence.end'='200000000',
      'fields.f_random.min'='1',
      'fields.f_random.max'='100',
      'fields.f_random_str.length'='100000',
      'fields.f_random_str_4.length'='100000',
      'fields.f_random_str_3.length'='100000',
      'fields.f_random_str_2.length'='100000',
      'fields.f_random_str_1.length'='100000'
      );

 

---------------------------------------

With more debugging I see this exception stack on the job manager

java.io.IOException: The rpc invocation size 199965215 exceeds the maximum akka framesize.                                                                    
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.createRpcInvocationMessage(AkkaInvocationHandler.java:276) [flink-dist_2.11-1.11.1.jar:1.11.1]
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invokeRpc(AkkaInvocationHandler.java:205) [flink-dist_2.11-1.11.1.jar:1.11.1]                  
     at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.invoke(AkkaInvocationHandler.java:134) [flink-dist_2.11-1.11.1.jar:1.11.1]                    
     at org.apache.flink.runtime.rpc.akka.FencedAkkaInvocationHandler.invoke(FencedAkkaInvocationHandler.java:79) [flink-dist_2.11-1.11.1.jar:1.11.1]          
     at com.sun.proxy.$Proxy25.acknowledgeCheckpoint(Unknown Source) [?:?]                                                                                    
     at org.apache.flink.runtime.taskexecutor.rpc.RpcCheckpointResponder.acknowledgeCheckpoint(RpcCheckpointResponder.java:46) [flink-dist_2.11-1.11.1.jar:1.1
 .1[]                                                                                                                                                          
     at org.apache.flink.runtime.state.TaskStateManagerImpl.reportTaskStateSnapshots(TaskStateManagerImpl.java:117) [flink-dist_2.11-1.11.1.jar:1.11.1]        
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.reportCompletedSnapshotStates(AsyncCheckpointRunnable.java:160) [flink-dist_2.11-1.11
 1.jar:1.11.1[]                                                                                                                                                
     at org.apache.flink.streaming.runtime.tasks.AsyncCheckpointRunnable.run(AsyncCheckpointRunnable.java:121) [flink-dist_2.11-1.11.1.jar:1.11.1]            
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_172]                                                          
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_172]

 

----------------------------------------------

And sometime the JM dies with this OOM

 java.lang.OutOfMemoryError: Java heap space
  at java.util.Arrays.copyOf(Arrays.java:3236) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93) ~[?:1.8.0_172]
  at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189) ~[?:1.8.0_172]
  at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348) ~[?:1.8.0_172]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply$mcV$sp(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer$$anonfun$toBinary$1.apply(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.serialization.JavaSerializer.toBinary(Serializer.scala:324) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.MessageSerializer$.serialize(MessageSerializer.scala:53) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$serializeMessage$1.apply(Endpoint.scala:906) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.serializeMessage(Endpoint.scala:905) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeSend(Endpoint.scala:793) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.delegate$1(Endpoint.scala:682) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.writeLoop$1(Endpoint.scala:693) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter.sendBufferedMessages(Endpoint.scala:706) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointWriter$$anonfun$3.applyOrElse(Endpoint.scala:637) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.Actor$class.aroundReceive(Actor.scala:517) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.remote.EndpointActor.aroundReceive(Endpoint.scala:458) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.actor.ActorCell.invoke(ActorCell.scala:561) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.run(Mailbox.scala:225) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.Mailbox.exec(Mailbox.scala:235) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) ~[flink-dist_2.11-1.11.1.jar:1.11.1]
  at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) ~[flink-dist_2.11-1.11.1.jar:1.11.1]

 

 

On Wed, Nov 18, 2020 at 12:16 AM Yun Tang <[hidden email]> wrote:

Hi Slim

 

You could check the logs of taskmanager to see whether incremental checkpoint is really enabled (or you could find whether files existed under /opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/shared to judge).

If your configuration of rocksDB and incremental-checkpoingt is really enabled, I think the large metadata size is caused by the memory threshold [1] which will send data in bytes format back to JM directly if state handle is smaller than specific threshold.

Try to decrease this value to '1 kb' to see whether the size of meta data could also decrease.

 

 

Best

Yun Tang


From: Slim Bouguerra <[hidden email]>
Sent: Wednesday, November 18, 2020 6:16
To: [hidden email] <[hidden email]>
Subject: Job Manager is taking very long time to finalize the Checkpointing.

 

 

Originally posed to the dev list

---------- Forwarded message ---------
From: Slim Bouguerra <[hidden email]>
Date: Tue, Nov 17, 2020 at 8:09 AM
Subject: Job Manager is taking very long time to finalize the Checkpointing.
To: <[hidden email]>

 

Hi Devs,

I am very new to the Flink code base and working on the evaluation of  the Checkpointing strategy

 

In my current setup I am using an NFS based file system as a checkpoint store. (NAS/NFS has a very high TP over 2GB/s on one node and I am using 12 NFS servers )

When pushing the system to some relatively medium scale aka 120 subtasks over 6 works with a total state of 100GB.

I observe that the Job manager takes over 2 minutes to finalize the checkpoint. (observed on the UI and CPU profiling of JM see the flame graph of 30 second sample)

As you can see by the attached Flames graphs the JM is very busy serializing the metadata (>org/apache/flink/runtime/checkpoint/metadata/MetadataV3Serializer.serializeOperatorState (2,875 samples, 99.65%))

Now the question is why this metadata file is so big in the order of 3GBs in my case.

How does this size scale ? num_of_tasks * num_states ?

 

/opt/flink/pv/checkpoints/c0580ec8f55fcf1e0ceaa46fc3778b99/chk-1
bash-4.2$ ls -all -h
-rw-r--r-- 1 flink flink 3.0G Nov 17 01:42 _metadata

 

The second question how to better measure the time taken by the JM to commit the transaction aka time_done_checkpoint - time_got_all_ask_form_tm

Is there a config flag I am missing to make this last step faster ?

 

My current configs for Checkpoints

state.backend: rocksdb
    # See the PV mount path need to be the same as  <mountPath: "/opt/flink/pv">
    state.checkpoints.dir: file:///opt/flink/pv/checkpoints
    state.savepoints.dir: file:///opt/flink/pv/savepoints
    state.backend.incremental: true
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#checkpointing
    execution.checkpointing.interval: 60000
    execution.checkpointing.mode: AT_LEAST_ONCE
    # hitting The rpc invocation size 19598830 exceeds the maximum akka
    akka.framesize: 100485760b
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#heartbeat-timeout
    heartbeat.timeout: 70000
    # https://ci.apache.org/projects/flink/flink-docs-release-1.11/ops/config.html#execution-checkpointing-timeout
    execution.checkpointing.timeout: 15minutes

 

 

some metadata about the checkpoint

{"@class":"completed","id":1,"status":"COMPLETED","is_savepoint":false,"trigger_timestamp":1605315046120,"latest_ack_timestamp":1605315093466,"state_size":12239786229,"end_to_end_duration":47346,"alignment_buffered":0,"num_subtasks":120,"num_acknowledged_subtasks":120,"tasks":{},"external_path":"file:/opt/flink/pv/checkpoints/7474752476036c14d7fdeb4e86af3638/chk-1"}



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer

Image removed by sender.

 

Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--


B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______



--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______


--

Arvid Heise | Senior Java Developer


Follow us @VervericaData

--

Join Flink Forward - The Apache Flink Conference

Stream Processing | Event Driven | Real Time

--

Ververica GmbH | Invalidenstrasse 115, 10115 Berlin, Germany

--

Ververica GmbH
Registered at Amtsgericht Charlottenburg: HRB 158244 B
Managing Directors: Timothy Alexander Steinert, Yip Park Tung Jason, Ji (Toni) Cheng   


--

B-Slim
_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______/\/\/\_______