Hi Hanan,After investigating the issue by using the test case you provided, I think there is a big in it. Currently, the parquet predicts push down use the predicate literal type to construct the FilterPredicate.The issue happens when the data type of value in predicate inferred from SQL doesn't match the parquet schema. For example, foo is a long type, foo < 1 is the predicate. Literal will be recognized as an integration. It causes the parquet FilterPredicate is mistakenly created for the column of Integer type. I created a ticket for the issue. https://issues.apache.org/jira/browse/FLINK-14953. Please also add more insight by comment directly on it.Best RegardsPeter HuangOn Mon, Nov 18, 2019 at 12:40 PM Hanan Yehudai <[hidden email]> wrote:HI Peter. Thanks.
This is my code . I used one of the parquet / avro tests as a reference.
The code will fail on
Test testScan(ParquetTestCase) failed with:
java.lang.UnsupportedOperationException
at org.apache.parquet.filter2.recordlevel.IncrementallyUpdatedFilterPredicate$ValueInspector.update(IncrementallyUpdatedFilterPredicate.java:71)
at org.apache.parquet.filter2.recordlevel.FilteringPrimitiveConverter.addLong(FilteringPrimitiveConverter.java:105)
at org.apache.parquet.column.impl.ColumnReaderImpl$2$4.writeValue(ColumnReaderImpl.java:268)
CODE :
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.generic.GenericRecordBuilder;
import org.apache.avro.specific.SpecificRecord;
import org.apache.avro.specific.SpecificRecordBuilderBase;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.io.ParallelIteratorInputFormat;
import org.apache.flink.api.java.io.TupleCsvInputFormat;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.core.fs.FileSystem;
import org.apache.flink.core.fs.Path;
import org.apache.flink.formats.parquet.ParquetTableSource;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.java.BatchTableEnvironment;
import org.apache.flink.table.api.java.StreamTableEnvironment;
import org.apache.flink.table.sinks.CsvTableSink;
import org.apache.flink.table.sinks.TableSink;
import org.apache.flink.test.util.MultipleProgramsTestBase;
import org.apache.flink.types.Row;
import org.apache.avro.generic.IndexedRecord;
import org.apache.parquet.avro.AvroSchemaConverter;
import org.apache.parquet.schema.MessageType;
import org.junit.BeforeClass;
import org.junit.ClassRule;
import org.junit.Test;
import org.junit.rules.TemporaryFolder;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;
import static org.junit.Assert.assertEquals;
import org.apache.parquet.avro.AvroParquetWriter;
import org.apache.parquet.hadoop.ParquetWriter;
public class ParquetTestCase extends MultipleProgramsTestBase {
private static String avroSchema = "{\n" +
" \"name\": \"SimpleRecord\",\n" +
" \"type\": \"record\",\n" +
" \"fields\": [\n" +
" { \"default\": null, \"name\": \"timestamp_edr\", \"type\": [ \"null\", \"long\" ]},\n" +
" { \"default\": null, \"name\": \"id\", \"type\": [ \"null\", \"long\" ]},\n" +
" { \"default\": null, \"name\": \"recordType_\", \"type\": [ \"null\", \"string\"]}\n" +
" ],\n" +
" \"schema_id\": 1,\n" +
" \"type\": \"record\"\n" +
"}";
private static final AvroSchemaConverter SCHEMA_CONVERTER = new AvroSchemaConverter();
private static Schema schm = new Schema.Parser().parse(avroSchema);
private static Path testPath;
public ParquetTestCase() {
super(TestExecutionMode.COLLECTION);
}
@BeforeClass
public static void setup() throws Exception {
GenericRecordBuilder genericRecordBuilder = new GenericRecordBuilder(schm);
List<IndexedRecord> recs = new ArrayList<>();
for (int i = 0; i < 6; i++) {
GenericRecord gr = genericRecordBuilder.set("timestamp_edr", System.currentTimeMillis() / 1000).set("id", 3333333L).set("recordType_", "Type1").build();
recs.add(gr);
GenericRecord gr2 = genericRecordBuilder.set("timestamp_edr", System.currentTimeMillis() / 1000).set("id", 222222L).set("recordType_", "Type2").build();
recs.add(gr2);
}
testPath = new Path("/tmp", UUID.randomUUID().toString());
ParquetWriter<IndexedRecord> writer = AvroParquetWriter.<IndexedRecord>builder(
new org.apache.hadoop.fs.Path(testPath.toUri())).withSchema(schm).build();
for (IndexedRecord record : recs) {
writer.write(record);
}
writer.close();
}
private ParquetTableSource createParquetTableSource(Path path) throws IOException {
MessageType nestedSchema = SCHEMA_CONVERTER.convert(schm);
ParquetTableSource parquetTableSource = ParquetTableSource.builder()
.path(path.getPath())
.forParquetSchema(nestedSchema)
.build();
return parquetTableSource;
}
@Test
public void testScan() throws Exception {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
BatchTableEnvironment batchTableEnvironment = BatchTableEnvironment.create(env);
ParquetTableSource tableSource = createParquetTableSource(testPath);
batchTableEnvironment.registerTableSource("ParquetTable", tableSource);
Table tab = batchTableEnvironment.sqlQuery("select id,recordType_ from ParquetTable where id > 222222 ");
DataSet<Row> result = batchTableEnvironment.toDataSet(tab, Row.class);
result.print();
}
}
From: Peter Huang <[hidden email]>
Sent: Monday, November 18, 2019 7:22 PM
To: dev <[hidden email]>
Cc: [hidden email]
Subject: Re: SQL for Avro GenericRecords on Parquet
Hi Hanan,
Thanks for reporting the issue. Would you please attach your test code here? I may help to investigate.
Best Regards
Peter Huang
On Mon, Nov 18, 2019 at 2:51 AM Hanan Yehudai <[hidden email]> wrote:
I have tried to persist Generic Avro records in a parquet file and then read it via ParquetTablesource – using SQL.
Seems that the SQL I not executed properly !
The persisted records are :
Id , type
3333333,Type1
222222,Type2
3333333,Type1
222222,Type2
3333333,Type1
222222,Type2
3333333,Type1
222222,Type2
3333333,Type1
222222,Type2
3333333,Type1
222222,Type2
While SQL of SELECT id ,recordType_ FROM ParquetTable - return the above ( which is correct)
Running : "SELECT id ,recordType_ FROM ParquetTable where recordType_='Type1' "
Will result in :
3333333,Type1
222222,Type1
3333333,Type1
222222,Type1
3333333,Type1
222222,Type1
3333333,Type1
222222,Type1
3333333,Type1
222222,Type1
3333333,Type1
222222,Type1
As if the equal sign is assignment and not equal …
am I doing something wrong ? is it an issue of Generic record vs SpecificRecords ?
Free forum by Nabble | Edit this page |