Yes,I really override the method, but it did not work. Finally ,I used ds.map()(Types.ROW()),then it works fine, but I did't know why. The code isval inputStream: DataStream[Row] = env.addSource(myConsumer)(Types.ROW(fieldNameArray, flinkTypeArray))
在 2018年6月8日,下午3:15,Timo Walther <[hidden email]> 写道:
Can you verify with a debugger if you really override the method. It seems to be that your created type information is either not called/not used.
Regards,
Timo
Am 07.06.18 um 09:03 schrieb 孙森:
Hi,Timo
Thank you for the reply.The `inputStream.getType` is GenericTypeInfo<Row>.
Thanks~
sen
在 2018年6月7日,下午2:28,Timo Walther <[hidden email]> 写道:
Sorry, I didn't see you last mail. The code looks good actually. What is the result of `inputStream.getType` if you print it to the console?
Timo
Am 07.06.18 um 08:24 schrieb Timo Walther:
Hi,
Row is a very special datatype where Flink cannot generate serializers based on the generics. By default DeserializationSchema uses reflection-based type analysis, you need to override the getResultType() method in WormholeDeserializationSchema. And specify the type information manually there.
Hope this helps.
Regards,
Timo
Am 06.06.18 um 13:22 schrieb 孙森:
Hi ,I've tried to to specify such a schema, when I read from kafka, and covert inputstream to table . But I got the exception:
- Exception in thread "main" org.apache.flink.table.api.TableException: An input of GenericTypeInfo cannot be converted to Table. Please specify the type of the input with a RowTypeInfo
And the code here:
private def getSchemaMap(jsonSchema: String) = { val umsSchema = JsonUtils.json2caseClass[UmsSchema](jsonSchema) val fields = umsSchema.fields_get val fieldNameList = ListBuffer.empty[String] val fieldTypeList = ListBuffer.empty[TypeInformation[_]] fields.foreach { field => fieldNameList.append(field.name) fieldTypeList.append(fieldTypeMatch(field.`type`)) } println(fieldNameList) println(fieldTypeList) (fieldNameList.toArray, fieldTypeList.toArray) } private def fieldTypeMatch(umsFieldType: UmsFieldType): TypeInformation[_] = { umsFieldType match { case STRING => Types.STRING case INT => Types.INT case LONG => Types.LONG case FLOAT => Types.FLOAT case DOUBLE => Types.DOUBLE case BOOLEAN => Types.BOOLEAN case DATE => Types.SQL_DATE case DATETIME => Types.SQL_TIMESTAMP case DECIMAL => Types.DECIMAL } } } val myConsumer: FlinkKafkaConsumer010[Row] = new FlinkKafkaConsumer010(topics, new WormholeDeserializationSchema(jsonSchema), properties) val inputStream: DataStream[Row] = env.addSource(myConsumer) val tableEnv = TableEnvironment.getTableEnvironment(env)<<—————exception here
Thanks !sen
Free forum by Nabble | Edit this page |