Hello,
I am learning Flink and using the docker image along with the AMIDST library for this. Below is a sample task from AMIDST which provides INFO output up until I reach updateModel(). I pasted the short method as well and wonder what prevents the Logger from //Set-up Flink session env = ExecutionEnvironment.getExecutionEnvironment(); env.getConfig().disableSysoutLogging(); Logger LOG = LoggerFactory.getLogger(">>>>> ParallelMLExample"); //generate a random dataset DataFlink<DataInstance> dataFlink = new DataSetGenerator().generate(env, 1234, 1000, 5, 0); //Creates a DAG with the NaiveBayes structure for the random dataset DAG dag = DAGGenerator.getNaiveBayesStructure(dataFlink.getAttributes(), "DiscreteVar4"); LOG.info(dag.toString()); //Create the Learner object ParameterLearningAlgorithm learningAlgorithmFlink = new ParallelMaximumLikelihood(); //Learning parameters learningAlgorithmFlink.setBatchSize(10); learningAlgorithmFlink.setDAG(dag); //Initialize the learning process learningAlgorithmFlink.initLearning(); //Learn from the flink data LOG.info("BEFORE UPDATEMODEL"); learningAlgorithmFlink.updateModel(dataFlink); LOG.info("AFTER UPDATEMODEL"); //Print the learnt Bayes Net BayesianNetwork bn = learningAlgorithmFlink.getLearntBayesianNetwork(); LOG.info(bn.toString()); Below is the updateModel method. public double updateModel(DataFlink<DataInstance> dataUpdate) { try { Configuration config = new Configuration(); config.setString(BN_NAME, this.dag.getName()); config.setBytes(EFBN_NAME, Serialization.serializeObject(efBayesianNetwork)); DataSet<DataInstance> dataset = dataUpdate.getDataSet(); this.sumSS = dataset.map(new SufficientSatisticsMAP()) .withParameters(config) .reduce(new SufficientSatisticsReduce()) .collect().get(0); //Add the prior sumSS.sum(efBayesianNetwork.createInitSufficientStatistics()); JobExecutionResult result = dataset.getExecutionEnvironment().getLastJobExecutionResult(); numInstances = result.getAccumulatorResult(ParallelMaximumLikelihood.COUNTER_NAME+"_"+this.dag.getName()); numInstances++;//Initial counts }catch(Exception ex){ throw new UndeclaredThrowableException(ex); } return this.getLogMarginalProbability(); } Not sure why LOG.info past that method are not output to the console. TIA JP |
Just a guess, but probably our logging initialisation changes the global
log level (see conf/log4j.properties). DataStream.collect() executes the program along with creating a local Flink "cluster" (if you are testing locally / in an IDE) and initializing logging, among other things. Please comment the first line out and uncomment the following one to read like this: ========== # This affects logging for both user code and Flink #log4j.rootLogger=INFO, file # Uncomment this if you want to _only_ change Flink's logging log4j.logger.org.apache.flink=INFO ========== Nico On 13/01/18 13:52, [hidden email] wrote: > Hello, > I am learning Flink and using the docker image along with the AMIDST > library for this. > Below is a sample task from AMIDST which provides INFO output up until I > reach updateModel(). I pasted the short method as well and wonder what > prevents the Logger from > > //Set-up Flink session > env = ExecutionEnvironment.getExecutionEnvironment(); > env.getConfig().disableSysoutLogging(); > Logger LOG = LoggerFactory.getLogger(">>>>> ParallelMLExample"); > > //generate a random dataset > DataFlink<DataInstance> dataFlink = new > DataSetGenerator().generate(env, 1234, 1000, 5, 0); > > //Creates a DAG with the NaiveBayes structure for the random > dataset > DAG dag = > DAGGenerator.getNaiveBayesStructure(dataFlink.getAttributes(), > "DiscreteVar4"); > LOG.info(dag.toString()); > > //Create the Learner object > ParameterLearningAlgorithm learningAlgorithmFlink = new > ParallelMaximumLikelihood(); > > //Learning parameters > learningAlgorithmFlink.setBatchSize(10); > learningAlgorithmFlink.setDAG(dag); > > //Initialize the learning process > learningAlgorithmFlink.initLearning(); > > //Learn from the flink data > LOG.info("BEFORE UPDATEMODEL"); > learningAlgorithmFlink.updateModel(dataFlink); > LOG.info("AFTER UPDATEMODEL"); > > //Print the learnt Bayes Net > BayesianNetwork bn = > learningAlgorithmFlink.getLearntBayesianNetwork(); > LOG.info(bn.toString()); > > > Below is the updateModel method. > > public double updateModel(DataFlink<DataInstance> dataUpdate) { > try { > Configuration config = new Configuration(); > config.setString(BN_NAME, this.dag.getName()); > config.setBytes(EFBN_NAME, > Serialization.serializeObject(efBayesianNetwork)); > > DataSet<DataInstance> dataset = dataUpdate.getDataSet(); > this.sumSS = dataset.map(new SufficientSatisticsMAP()) > .withParameters(config) > .reduce(new SufficientSatisticsReduce()) > .collect().get(0); > > //Add the prior > sumSS.sum(efBayesianNetwork.createInitSufficientStatistics()); > > JobExecutionResult result = > dataset.getExecutionEnvironment().getLastJobExecutionResult(); > > numInstances = > result.getAccumulatorResult(ParallelMaximumLikelihood.COUNTER_NAME+"_"+this.dag.getName()); > > numInstances++;//Initial counts > > }catch(Exception ex){ > throw new UndeclaredThrowableException(ex); > } > > return this.getLogMarginalProbability(); > } > > > Not sure why LOG.info past that method are not output to the console. > TIA > JP signature.asc (201 bytes) Download Attachment |
Hello Nico,
took me a while to respond. Thank you for the comments. I had explored a little more the docker-image and startup scripts. That allowed me to better understand the log4j properties file used but I am still facing this odd behavior. I created a stackoverflow entry for this https://stackoverflow.com/questions/48853497/docker-flink-not-showing-all-log-statements Below, I am just showing the properties file below which I hadn't put on SO. # This affects logging for both user code and Flink log4j.rootLogger=INFO, file, console # Uncomment this if you want to _only_ change Flink's logging log4j.logger.org.apache.flink=OFF # The following lines keep the log level of common libraries/connectors on # log level INFO. The root logger does not override this. You have to manually # change the log levels here. log4j.logger.akka=INFO log4j.logger.org.apache.kafka=INFO log4j.logger.org.apache.hadoop=INFO log4j.logger.org.apache.zookeeper=INFO # Log all infos in the given file log4j.appender.file=org.apache.log4j.FileAppender log4j.appender.file.file=${log.file} log4j.appender.file.append=false log4j.appender.file.layout=org.apache.log4j.PatternLayout log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n # Log all infos to the console log4j.appender.console=org.apache.log4j.ConsoleAppender log4j.appender.console.Target=System.out log4j.appender.console.layout=org.apache.log4j.PatternLayout log4j.appender.console.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n # Suppress the irrelevant (wrong) warnings log4j.logger.org.jboss.netty.channel.DefaultChannelPipeline=ERROR, file log4j.logger.org.apache.hadoop.util.NativeCodeLoader=OFF JP On 01/16/2018 10:50 AM, Nico Kruber wrote: > Just a guess, but probably our logging initialisation changes the global > log level (see conf/log4j.properties). DataStream.collect() executes the > program along with creating a local Flink "cluster" (if you are testing > locally / in an IDE) and initializing logging, among other things. > > Please comment the first line out and uncomment the following one to > read like this: > ========== > # This affects logging for both user code and Flink > #log4j.rootLogger=INFO, file > > # Uncomment this if you want to _only_ change Flink's logging > log4j.logger.org.apache.flink=INFO > ========== > > > Nico > > On 13/01/18 13:52, [hidden email] wrote: >> Hello, >> I am learning Flink and using the docker image along with the AMIDST >> library for this. >> Below is a sample task from AMIDST which provides INFO output up until I >> reach updateModel(). I pasted the short method as well and wonder what >> prevents the Logger from >> >> //Set-up Flink session >> env = ExecutionEnvironment.getExecutionEnvironment(); >> env.getConfig().disableSysoutLogging(); >> Logger LOG = LoggerFactory.getLogger(">>>>> ParallelMLExample"); >> >> //generate a random dataset >> DataFlink<DataInstance> dataFlink = new >> DataSetGenerator().generate(env, 1234, 1000, 5, 0); >> >> //Creates a DAG with the NaiveBayes structure for the random >> dataset >> DAG dag = >> DAGGenerator.getNaiveBayesStructure(dataFlink.getAttributes(), >> "DiscreteVar4"); >> LOG.info(dag.toString()); >> >> //Create the Learner object >> ParameterLearningAlgorithm learningAlgorithmFlink = new >> ParallelMaximumLikelihood(); >> >> //Learning parameters >> learningAlgorithmFlink.setBatchSize(10); >> learningAlgorithmFlink.setDAG(dag); >> >> //Initialize the learning process >> learningAlgorithmFlink.initLearning(); >> >> //Learn from the flink data >> LOG.info("BEFORE UPDATEMODEL"); >> learningAlgorithmFlink.updateModel(dataFlink); >> LOG.info("AFTER UPDATEMODEL"); >> >> //Print the learnt Bayes Net >> BayesianNetwork bn = >> learningAlgorithmFlink.getLearntBayesianNetwork(); >> LOG.info(bn.toString()); >> >> >> Below is the updateModel method. >> >> public double updateModel(DataFlink<DataInstance> dataUpdate) { >> try { >> Configuration config = new Configuration(); >> config.setString(BN_NAME, this.dag.getName()); >> config.setBytes(EFBN_NAME, >> Serialization.serializeObject(efBayesianNetwork)); >> >> DataSet<DataInstance> dataset = dataUpdate.getDataSet(); >> this.sumSS = dataset.map(new SufficientSatisticsMAP()) >> .withParameters(config) >> .reduce(new SufficientSatisticsReduce()) >> .collect().get(0); >> >> //Add the prior >> sumSS.sum(efBayesianNetwork.createInitSufficientStatistics()); >> >> JobExecutionResult result = >> dataset.getExecutionEnvironment().getLastJobExecutionResult(); >> >> numInstances = >> result.getAccumulatorResult(ParallelMaximumLikelihood.COUNTER_NAME+"_"+this.dag.getName()); >> >> numInstances++;//Initial counts >> >> }catch(Exception ex){ >> throw new UndeclaredThrowableException(ex); >> } >> >> return this.getLogMarginalProbability(); >> } >> >> >> Not sure why LOG.info past that method are not output to the console. >> TIA >> JP signature.asc (484 bytes) Download Attachment |
I'm a bit curious on how you hand your log4j into the docker image for
consumption. On SO you are referring to bin/flink-console.sh but executing Flink in docker is a bit different. Maybe I'm wrong, but looking at the sources of the docker image [1], it will not forward any additional parameters to the docker container via additions to the command starting the docker image. Nico [1] https://github.com/docker-flink/docker-flink/tree/master/1.4/hadoop28-scala_2.11-alpine On 27/02/18 18:25, JP de Vooght wrote: > Hello Nico, > > took me a while to respond. Thank you for the comments. I had explored a > little more the docker-image and startup scripts. That allowed me to > better understand the log4j properties file used but I am still facing > this odd behavior. > > I created a stackoverflow entry for this > > https://stackoverflow.com/questions/48853497/docker-flink-not-showing-all-log-statements > > Below, I am just showing the properties file below which I hadn't put on SO. > > # This affects logging for both user code and Flink > log4j.rootLogger=INFO, file, console > > # Uncomment this if you want to _only_ change Flink's logging > log4j.logger.org.apache.flink=OFF > > # The following lines keep the log level of common libraries/connectors on > # log level INFO. The root logger does not override this. You have to > manually > # change the log levels here. > log4j.logger.akka=INFO > log4j.logger.org.apache.kafka=INFO > log4j.logger.org.apache.hadoop=INFO > log4j.logger.org.apache.zookeeper=INFO > > # Log all infos in the given file > log4j.appender.file=org.apache.log4j.FileAppender > log4j.appender.file.file=${log.file} > log4j.appender.file.append=false > log4j.appender.file.layout=org.apache.log4j.PatternLayout > log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} > %-5p %-60c %x - %m%n > > # Log all infos to the console > log4j.appender.console=org.apache.log4j.ConsoleAppender > log4j.appender.console.Target=System.out > log4j.appender.console.layout=org.apache.log4j.PatternLayout > log4j.appender.console.layout.ConversionPattern=%d{yyyy-MM-dd > HH:mm:ss,SSS} %-5p %-60c %x - %m%n > > # Suppress the irrelevant (wrong) warnings > log4j.logger.org.jboss.netty.channel.DefaultChannelPipeline=ERROR, file > log4j.logger.org.apache.hadoop.util.NativeCodeLoader=OFF > > JP > > > On 01/16/2018 10:50 AM, Nico Kruber wrote: >> Just a guess, but probably our logging initialisation changes the global >> log level (see conf/log4j.properties). DataStream.collect() executes the >> program along with creating a local Flink "cluster" (if you are testing >> locally / in an IDE) and initializing logging, among other things. >> >> Please comment the first line out and uncomment the following one to >> read like this: >> ========== >> # This affects logging for both user code and Flink >> #log4j.rootLogger=INFO, file >> >> # Uncomment this if you want to _only_ change Flink's logging >> log4j.logger.org.apache.flink=INFO >> ========== >> >> >> Nico >> >> On 13/01/18 13:52, [hidden email] wrote: >>> Hello, >>> I am learning Flink and using the docker image along with the AMIDST >>> library for this. >>> Below is a sample task from AMIDST which provides INFO output up until I >>> reach updateModel(). I pasted the short method as well and wonder what >>> prevents the Logger from >>> >>> //Set-up Flink session >>> env = ExecutionEnvironment.getExecutionEnvironment(); >>> env.getConfig().disableSysoutLogging(); >>> Logger LOG = LoggerFactory.getLogger(">>>>> ParallelMLExample"); >>> >>> //generate a random dataset >>> DataFlink<DataInstance> dataFlink = new >>> DataSetGenerator().generate(env, 1234, 1000, 5, 0); >>> >>> //Creates a DAG with the NaiveBayes structure for the random >>> dataset >>> DAG dag = >>> DAGGenerator.getNaiveBayesStructure(dataFlink.getAttributes(), >>> "DiscreteVar4"); >>> LOG.info(dag.toString()); >>> >>> //Create the Learner object >>> ParameterLearningAlgorithm learningAlgorithmFlink = new >>> ParallelMaximumLikelihood(); >>> >>> //Learning parameters >>> learningAlgorithmFlink.setBatchSize(10); >>> learningAlgorithmFlink.setDAG(dag); >>> >>> //Initialize the learning process >>> learningAlgorithmFlink.initLearning(); >>> >>> //Learn from the flink data >>> LOG.info("BEFORE UPDATEMODEL"); >>> learningAlgorithmFlink.updateModel(dataFlink); >>> LOG.info("AFTER UPDATEMODEL"); >>> >>> //Print the learnt Bayes Net >>> BayesianNetwork bn = >>> learningAlgorithmFlink.getLearntBayesianNetwork(); >>> LOG.info(bn.toString()); >>> >>> >>> Below is the updateModel method. >>> >>> public double updateModel(DataFlink<DataInstance> dataUpdate) { >>> try { >>> Configuration config = new Configuration(); >>> config.setString(BN_NAME, this.dag.getName()); >>> config.setBytes(EFBN_NAME, >>> Serialization.serializeObject(efBayesianNetwork)); >>> >>> DataSet<DataInstance> dataset = dataUpdate.getDataSet(); >>> this.sumSS = dataset.map(new SufficientSatisticsMAP()) >>> .withParameters(config) >>> .reduce(new SufficientSatisticsReduce()) >>> .collect().get(0); >>> >>> //Add the prior >>> sumSS.sum(efBayesianNetwork.createInitSufficientStatistics()); >>> >>> JobExecutionResult result = >>> dataset.getExecutionEnvironment().getLastJobExecutionResult(); >>> >>> numInstances = >>> result.getAccumulatorResult(ParallelMaximumLikelihood.COUNTER_NAME+"_"+this.dag.getName()); >>> >>> numInstances++;//Initial counts >>> >>> }catch(Exception ex){ >>> throw new UndeclaredThrowableException(ex); >>> } >>> >>> return this.getLogMarginalProbability(); >>> } >>> >>> >>> Not sure why LOG.info past that method are not output to the console. >>> TIA >>> JP > signature.asc (201 bytes) Download Attachment |
in the docker-compose.yaml I have a volume entry which maps my
log4j.properties with /opt/flink/conf/log4j-console.properties Not pretty but it works after I determined how it was being launched. See below version: "2.1" services: jobmanager: image: flink expose: - "6123" ports: - "8081:8081" command: jobmanager volumes: - /c/Users/XYZ/playground/flink/shared/log4j.properties:/opt/flink/conf/log4j-console.properties environment: - JOB_MANAGER_RPC_ADDRESS=jobmanager - FLINK_ENV_JAVA_OPTS=-Dlog.file=/opt/flink/log/jobmanager.log taskmanager: image: flink expose: - "6121" - "6122" depends_on: - jobmanager command: taskmanager links: - jobmanager:jobmanager volumes: - /c/Users/XYZ/playground/flink/shared/log4j.properties:/opt/flink/conf/log4j-console.properties environment: - JOB_MANAGER_RPC_ADDRESS=jobmanager - FLINK_ENV_JAVA_OPTS=-Dlog.file=/opt/flink/log/taskmanager.log On 02/28/2018 04:55 PM, Nico Kruber wrote: > I'm a bit curious on how you hand your log4j into the docker image for > consumption. On SO you are referring to bin/flink-console.sh but > executing Flink in docker is a bit different. > Maybe I'm wrong, but looking at the sources of the docker image [1], it > will not forward any additional parameters to the docker container via > additions to the command starting the docker image. > > > Nico > > [1] > https://github.com/docker-flink/docker-flink/tree/master/1.4/hadoop28-scala_2.11-alpine > > On 27/02/18 18:25, JP de Vooght wrote: >> Hello Nico, >> >> took me a while to respond. Thank you for the comments. I had explored a >> little more the docker-image and startup scripts. That allowed me to >> better understand the log4j properties file used but I am still facing >> this odd behavior. >> >> I created a stackoverflow entry for this >> >> https://stackoverflow.com/questions/48853497/docker-flink-not-showing-all-log-statements >> >> Below, I am just showing the properties file below which I hadn't put on SO. >> >> # This affects logging for both user code and Flink >> log4j.rootLogger=INFO, file, console >> >> # Uncomment this if you want to _only_ change Flink's logging >> log4j.logger.org.apache.flink=OFF >> >> # The following lines keep the log level of common libraries/connectors on >> # log level INFO. The root logger does not override this. You have to >> manually >> # change the log levels here. >> log4j.logger.akka=INFO >> log4j.logger.org.apache.kafka=INFO >> log4j.logger.org.apache.hadoop=INFO >> log4j.logger.org.apache.zookeeper=INFO >> >> # Log all infos in the given file >> log4j.appender.file=org.apache.log4j.FileAppender >> log4j.appender.file.file=${log.file} >> log4j.appender.file.append=false >> log4j.appender.file.layout=org.apache.log4j.PatternLayout >> log4j.appender.file.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss,SSS} >> %-5p %-60c %x - %m%n >> >> # Log all infos to the console >> log4j.appender.console=org.apache.log4j.ConsoleAppender >> log4j.appender.console.Target=System.out >> log4j.appender.console.layout=org.apache.log4j.PatternLayout >> log4j.appender.console.layout.ConversionPattern=%d{yyyy-MM-dd >> HH:mm:ss,SSS} %-5p %-60c %x - %m%n >> >> # Suppress the irrelevant (wrong) warnings >> log4j.logger.org.jboss.netty.channel.DefaultChannelPipeline=ERROR, file >> log4j.logger.org.apache.hadoop.util.NativeCodeLoader=OFF >> >> JP >> >> >> On 01/16/2018 10:50 AM, Nico Kruber wrote: >>> Just a guess, but probably our logging initialisation changes the global >>> log level (see conf/log4j.properties). DataStream.collect() executes the >>> program along with creating a local Flink "cluster" (if you are testing >>> locally / in an IDE) and initializing logging, among other things. >>> >>> Please comment the first line out and uncomment the following one to >>> read like this: >>> ========== >>> # This affects logging for both user code and Flink >>> #log4j.rootLogger=INFO, file >>> >>> # Uncomment this if you want to _only_ change Flink's logging >>> log4j.logger.org.apache.flink=INFO >>> ========== >>> >>> >>> Nico >>> >>> On 13/01/18 13:52, [hidden email] wrote: >>>> Hello, >>>> I am learning Flink and using the docker image along with the AMIDST >>>> library for this. >>>> Below is a sample task from AMIDST which provides INFO output up until I >>>> reach updateModel(). I pasted the short method as well and wonder what >>>> prevents the Logger from >>>> >>>> //Set-up Flink session >>>> env = ExecutionEnvironment.getExecutionEnvironment(); >>>> env.getConfig().disableSysoutLogging(); >>>> Logger LOG = LoggerFactory.getLogger(">>>>> ParallelMLExample"); >>>> >>>> //generate a random dataset >>>> DataFlink<DataInstance> dataFlink = new >>>> DataSetGenerator().generate(env, 1234, 1000, 5, 0); >>>> >>>> //Creates a DAG with the NaiveBayes structure for the random >>>> dataset >>>> DAG dag = >>>> DAGGenerator.getNaiveBayesStructure(dataFlink.getAttributes(), >>>> "DiscreteVar4"); >>>> LOG.info(dag.toString()); >>>> >>>> //Create the Learner object >>>> ParameterLearningAlgorithm learningAlgorithmFlink = new >>>> ParallelMaximumLikelihood(); >>>> >>>> //Learning parameters >>>> learningAlgorithmFlink.setBatchSize(10); >>>> learningAlgorithmFlink.setDAG(dag); >>>> >>>> //Initialize the learning process >>>> learningAlgorithmFlink.initLearning(); >>>> >>>> //Learn from the flink data >>>> LOG.info("BEFORE UPDATEMODEL"); >>>> learningAlgorithmFlink.updateModel(dataFlink); >>>> LOG.info("AFTER UPDATEMODEL"); >>>> >>>> //Print the learnt Bayes Net >>>> BayesianNetwork bn = >>>> learningAlgorithmFlink.getLearntBayesianNetwork(); >>>> LOG.info(bn.toString()); >>>> >>>> >>>> Below is the updateModel method. >>>> >>>> public double updateModel(DataFlink<DataInstance> dataUpdate) { >>>> try { >>>> Configuration config = new Configuration(); >>>> config.setString(BN_NAME, this.dag.getName()); >>>> config.setBytes(EFBN_NAME, >>>> Serialization.serializeObject(efBayesianNetwork)); >>>> >>>> DataSet<DataInstance> dataset = dataUpdate.getDataSet(); >>>> this.sumSS = dataset.map(new SufficientSatisticsMAP()) >>>> .withParameters(config) >>>> .reduce(new SufficientSatisticsReduce()) >>>> .collect().get(0); >>>> >>>> //Add the prior >>>> sumSS.sum(efBayesianNetwork.createInitSufficientStatistics()); >>>> >>>> JobExecutionResult result = >>>> dataset.getExecutionEnvironment().getLastJobExecutionResult(); >>>> >>>> numInstances = >>>> result.getAccumulatorResult(ParallelMaximumLikelihood.COUNTER_NAME+"_"+this.dag.getName()); >>>> >>>> numInstances++;//Initial counts >>>> >>>> }catch(Exception ex){ >>>> throw new UndeclaredThrowableException(ex); >>>> } >>>> >>>> return this.getLogMarginalProbability(); >>>> } >>>> >>>> >>>> Not sure why LOG.info past that method are not output to the console. >>>> TIA >>>> JP |
In reply to this post by Nico Kruber
Nico, all, I am still stuck with this. Upgraded the docker image to 1.4.2 and the AMIDST library to 0.7.0 Just noticed this issue which signals logging issues outside transforms: https://issues.apache.org/jira/browse/FLINK-7990 Could this be related? Although I don't see the relation to logback. Below is the library code invoked after "BEFORE updateModel"
JPOn 01/16/2018 10:50 AM, Nico Kruber
wrote:
Just a guess, but probably our logging initialisation changes the global log level (see conf/log4j.properties). DataStream.collect() executes the program along with creating a local Flink "cluster" (if you are testing locally / in an IDE) and initializing logging, among other things. Please comment the first line out and uncomment the following one to read like this: ========== # This affects logging for both user code and Flink #log4j.rootLogger=INFO, file # Uncomment this if you want to _only_ change Flink's logging log4j.logger.org.apache.flink=INFO ========== Nico On 13/01/18 13:52, [hidden email] wrote:Hello, I am learning Flink and using the docker image along with the AMIDST library for this. Below is a sample task from AMIDST which provides INFO output up until I reach updateModel(). I pasted the short method as well and wonder what prevents the Logger from //Set-up Flink session env = ExecutionEnvironment.getExecutionEnvironment(); env.getConfig().disableSysoutLogging(); Logger LOG = LoggerFactory.getLogger(">>>>> ParallelMLExample"); //generate a random dataset DataFlink<DataInstance> dataFlink = new DataSetGenerator().generate(env, 1234, 1000, 5, 0); //Creates a DAG with the NaiveBayes structure for the random dataset DAG dag = DAGGenerator.getNaiveBayesStructure(dataFlink.getAttributes(), "DiscreteVar4"); LOG.info(dag.toString()); //Create the Learner object ParameterLearningAlgorithm learningAlgorithmFlink = new ParallelMaximumLikelihood(); //Learning parameters learningAlgorithmFlink.setBatchSize(10); learningAlgorithmFlink.setDAG(dag); //Initialize the learning process learningAlgorithmFlink.initLearning(); //Learn from the flink data LOG.info("BEFORE UPDATEMODEL"); learningAlgorithmFlink.updateModel(dataFlink); LOG.info("AFTER UPDATEMODEL"); //Print the learnt Bayes Net BayesianNetwork bn = learningAlgorithmFlink.getLearntBayesianNetwork(); LOG.info(bn.toString()); Below is the updateModel method. public double updateModel(DataFlink<DataInstance> dataUpdate) { try { Configuration config = new Configuration(); config.setString(BN_NAME, this.dag.getName()); config.setBytes(EFBN_NAME, Serialization.serializeObject(efBayesianNetwork)); DataSet<DataInstance> dataset = dataUpdate.getDataSet(); this.sumSS = dataset.map(new SufficientSatisticsMAP()) .withParameters(config) .reduce(new SufficientSatisticsReduce()) .collect().get(0); //Add the prior sumSS.sum(efBayesianNetwork.createInitSufficientStatistics()); JobExecutionResult result = dataset.getExecutionEnvironment().getLastJobExecutionResult(); numInstances = result.getAccumulatorResult(ParallelMaximumLikelihood.COUNTER_NAME+"_"+this.dag.getName()); numInstances++;//Initial counts }catch(Exception ex){ throw new UndeclaredThrowableException(ex); } return this.getLogMarginalProbability(); } Not sure why LOG.info past that method are not output to the console. TIA JP |
Just to recap
I use Flink 1.4.2 with Docker compose which launches a jobmanager and a taskmanager. My hope is to learn another library which can be used with Flink, so logging is important to me. I start the cluster and deploy the following task (I dropped all calls to that library so I can focus on plain Flink and docker) public class ParallelMLExample { private static final Logger LOG = LoggerFactory.getLogger(ParallelMLExample.class); public static void main(String[] args) throws Exception { final ExecutionEnvironment env; //Set-up Flink session env = ExecutionEnvironment.getExecutionEnvironment(); env.getConfig().disableSysoutLogging(); DataSet<Integer> amounts = env.fromElements(1, 29, 40, 50); LOG.info("########## BEFORE UPDATEMODEL ##########"); List<Integer> collect = amounts.filter(a -> a > 30).reduce((integer, t1) -> integer + t1).collect(); LOG.info("########## AFTER UPDATEMODEL ##########"); LOG.info(collect.get(0).toString()); } } Log output of jobmanager does not show anything after "BEFORE UPDATE MODEL" $ docker-compose up Starting flink_jobmanager_1 Starting flink_taskmanager_1 Attaching to flink_jobmanager_1, flink_taskmanager_1 jobmanager_1 | Starting Job Manager jobmanager_1 | config file: jobmanager_1 | jobmanager.rpc.address: jobmanager jobmanager_1 | jobmanager.rpc.port: 6123 jobmanager_1 | jobmanager.heap.mb: 1024 jobmanager_1 | taskmanager.heap.mb: 1024 jobmanager_1 | taskmanager.numberOfTaskSlots: 1 jobmanager_1 | taskmanager.memory.preallocate: false jobmanager_1 | parallelism.default: 1 jobmanager_1 | web.port: 8081 jobmanager_1 | blob.server.port: 6124 jobmanager_1 | query.server.port: 6125 jobmanager_1 | blob.server.port: 6124 jobmanager_1 | query.server.port: 6125 jobmanager_1 | blob.server.port: 6124 jobmanager_1 | query.server.port: 6125 taskmanager_1 | Starting Task Manager taskmanager_1 | config file: taskmanager_1 | jobmanager.rpc.address: jobmanager taskmanager_1 | jobmanager.rpc.port: 6123 taskmanager_1 | jobmanager.heap.mb: 1024 taskmanager_1 | taskmanager.heap.mb: 1024 taskmanager_1 | taskmanager.numberOfTaskSlots: 4 taskmanager_1 | taskmanager.memory.preallocate: false taskmanager_1 | parallelism.default: 1 taskmanager_1 | web.port: 8081 taskmanager_1 | blob.server.port: 6124 taskmanager_1 | query.server.port: 6125 taskmanager_1 | blob.server.port: 6124 taskmanager_1 | query.server.port: 6125 taskmanager_1 | blob.server.port: 6124 taskmanager_1 | query.server.port: 6125 jobmanager_1 | Starting jobmanager as a console application on host e207d6ad4a1a. taskmanager_1 | Starting taskmanager as a console application on host 1d724ce8ae5e. jobmanager_1 | Slf4jLogger started taskmanager_1 | Slf4jLogger started taskmanager_1 | Could not load Queryable State Client Proxy. Probable reason: flink-queryable-state-runtime is not in the classpath. To enable Queryable State, please move the flink-queryable-state-runtime jar from the opt to the lib folder. taskmanager_1 | Could not load Queryable State Server. Probable reason: flink-queryable-state-runtime is not in the classpath. To enable Queryable State, please move the flink-queryable-state-runtime jar from the opt to the lib folder. jobmanager_1 | ########## BEFORE UPDATEMODEL ########## taskmanager_1 | The operator name DataSource (at main(ParallelMLExample.java:30) (org.apache.flink.api.java.io.CollectionInputFormat)) exceeded the 80 characters length limit and was truncated. On 04/07/2018 02:46 PM, JP de Vooght
wrote:
|
I finally sorted my problem out. Using the CLI instead of the Web
UI for debugging with simple System.out.println() statements. I
noticed that a local installation launched with start-cluster.sh
worked A-OK. In order to reproduce a simple learning environment with docker
images, I ended up creating a my own image without that
entrypoint.sh and ensuring the CLI would run from an image on the
same bridge network... That image also includes some opt
libraries. That's about it really. docker-compose.yaml is below... version: "2.0" services: jobmanager: image: flink volumes: - /home/jdevoo/playground/amidst/conf:/opt/flink/conf ports: - "8081:8081" command: jobmanager.sh start-foreground cluster environment: - JOB_MANAGER_RPC_ADDRESS=jobmanager taskmanager: image: flink volumes: - /home/jdevoo/playground/amidst/conf:/opt/flink/conf depends_on: - jobmanager command: taskmanager.sh start-foreground depends_on: - jobmanager environment: - JOB_MANAGER_RPC_ADDRESS=jobmanager Going to enjoy some AMIDST solutions to ML problems now :-) JP On 04/07/2018 06:31 PM, JP de Vooght
wrote:
Just to recap |
Free forum by Nabble | Edit this page |