hi flink community, i have implement k-means for clustering temporal geo data. i use the following github project and my own data structure:https://github.com/apache/flink/blob/master/flink-examples/flink-java-examples/src/main/java/org/apache/flink/examples/java/clustering/KMeans.java ERROR actor.OneForOneStrategy: exception during creation akka.actor.ActorInitializationException: exception during creation at akka.actor.ActorInitializationException$.apply(Actor.scala:218) at akka.actor.ActorCell.create(ActorCell.scala:578) at akka.actor.ActorCell.invokeAll$1(ActorCell.scala:425) at akka.actor.ActorCell.systemInvoke(ActorCell.scala:447) at akka.dispatch.Mailbox.processAllSystemMessages(Mailbox.scala:262) at akka.dispatch.Mailbox.run(Mailbox.scala:218) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) Caused by: java.lang.reflect.InvocationTargetException at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:526) at akka.util.Reflect$.instantiate(Reflect.scala:65) at akka.actor.Props.newActor(Props.scala:337) at akka.actor.ActorCell.newActor(ActorCell.scala:534) at akka.actor.ActorCell.create(ActorCell.scala:560) ... 9 more |
Hi Paul, could you share your code with us so that we see whether there is any error. Does this error also occurs with 0.9-SNAPSHOT? Cheers, Till Che On Thu, May 21, 2015 at 11:11 AM, Pa Rö <[hidden email]> wrote:
|
hi, the exception came with version 0.9.public static void main(String[] args) { //load properties Properties pro = new Properties(); try { pro.load(new FileInputStream("./resources/config.properties")); } catch (Exception e) { e.printStackTrace(); } int maxIteration = 2;//Integer.parseInt(pro.getProperty("maxiterations")); String outputPath = pro.getProperty("flink.output"); // set up execution environment ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); // get input points DataSet<GeoTimeDataTupel> points = getPointDataSet(env); DataSet<GeoTimeDataCenter> centroids = getCentroidDataSet(env); // set number of bulk iterations for KMeans algorithm IterativeDataSet<GeoTimeDataCenter> loop = centroids.iterate(maxIteration); DataSet<GeoTimeDataCenter> newCentroids = points // compute closest centroid for each point .map(new SelectNearestCenter()).withBroadcastSet(loop, "centroids") // count and sum point coordinates for each centroid .groupBy(0).reduce(new CentroidAccumulator()) // compute new centroids from point counts and coordinate sums .map(new CentroidAverager()); // feed new centroids back into next iteration DataSet<GeoTimeDataCenter> finalCentroids = loop.closeWith(newCentroids); DataSet<Tuple2<Integer, GeoTimeDataTupel>> clusteredPoints = points // assign points to final clusters .map(new SelectNearestCenter()).withBroadcastSet(finalCentroids, "centroids"); // emit result clusteredPoints.writeAsCsv(outputPath+"/points", "\n", " "); finalCentroids.writeAsText(outputPath+"/centers");//print(); // execute program try { env.execute("KMeans Flink"); } catch (Exception e) { e.printStackTrace(); } } 2015-05-21 11:28 GMT+02:00 Till Rohrmann <[hidden email]>:
|
In reply to this post by Pa Rö
Hi! This problem should not depend on any user code. There are no user-code dependent actors in Flink. Is there more stack trace that you can send us? It looks like it misses the core exception that is causing the issue is not part of the stack trace. Greetings, Stephan On Thu, May 21, 2015 at 11:11 AM, Pa Rö <[hidden email]> wrote:
|
Concerning your first problem that you only see one resulting centroid, your code looks good modulo the parts you haven't posted. However, your problem could simply be caused by a bad selection of initial centroids. If, for example, all centroids except for one don't get any points assigned, then only one centroid will survive the iteration step. How do you do it? To check that all centroids are read you can print the contents of the centroids DataSet. Furthermore, you can simply println the new centroids after each iteration step. In local mode you can then observe the computation. Cheers, Till On Thu, May 21, 2015 at 12:23 PM, Stephan Ewen <[hidden email]> wrote:
|
hi, if i print the centroids all are show in the output. i have implement k means with map reduce und spark. by same input, i get the same output. but in flink i get a one cluster output with this input set. (i use csv files from the GDELT projekt)public class FlinkMain { public static void main(String[] args) { //load properties Properties pro = new Properties(); try { pro.load(new FileInputStream("./resources/config.properties")); } catch (Exception e) { e.printStackTrace(); } int maxIteration = 1;//Integer.parseInt(pro.getProperty("maxiterations")); String outputPath = pro.getProperty("flink.output"); // set up execution environment ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); // get input points DataSet<GeoTimeDataTupel> points = getPointDataSet(env); DataSet<GeoTimeDataCenter> centroids = getCentroidDataSet(env); // set number of bulk iterations for KMeans algorithm IterativeDataSet<GeoTimeDataCenter> loop = centroids.iterate(maxIteration); DataSet<GeoTimeDataCenter> newCentroids = points // compute closest centroid for each point .map(new SelectNearestCenter()).withBroadcastSet(loop, "centroids") // count and sum point coordinates for each centroid .groupBy(0).reduce(new CentroidAccumulator()) // compute new centroids from point counts and coordinate sums .map(new CentroidAverager()); // feed new centroids back into next iteration DataSet<GeoTimeDataCenter> finalCentroids = loop.closeWith(newCentroids); DataSet<Tuple2<Integer, GeoTimeDataTupel>> clusteredPoints = points // assign points to final clusters .map(new SelectNearestCenter()).withBroadcastSet(finalCentroids, "centroids"); // emit result clusteredPoints.writeAsCsv(outputPath+"/points", "\n", " "); finalCentroids.writeAsText(outputPath+"/centers");//print(); // execute program try { env.execute("KMeans Flink"); } catch (Exception e) { e.printStackTrace(); } } private static final class SelectNearestCenter extends RichMapFunction<GeoTimeDataTupel,Tuple2<Integer,GeoTimeDataTupel>> { private static final long serialVersionUID = -2729445046389350264L; private Collection<GeoTimeDataCenter> centroids; @Override public void open(Configuration parameters) throws Exception { this.centroids = getRuntimeContext().getBroadcastVariable("centroids"); } @Override public Tuple2<Integer, GeoTimeDataTupel> map(GeoTimeDataTupel point) throws Exception { double minDistance = Double.MAX_VALUE; int closestCentroidId= -1; // check all cluster centers for(GeoTimeDataCenter centroid : centroids) { // compute distance double distance = Distance.ComputeDist(point, centroid); // update nearest cluster if necessary if(distance < minDistance) { minDistance = distance; closestCentroidId = centroid.getId(); } } // emit a new record with the center id and the data point return new Tuple2<Integer, GeoTimeDataTupel>(closestCentroidId, point); } } // sums and counts point coordinates private static final class CentroidAccumulator implements ReduceFunction<Tuple2<Integer, GeoTimeDataTupel>> { private static final long serialVersionUID = -4868797820391121771L; public Tuple2<Integer, GeoTimeDataTupel> reduce(Tuple2<Integer, GeoTimeDataTupel> val1, Tuple2<Integer, GeoTimeDataTupel> val2) { return new Tuple2<Integer, GeoTimeDataTupel>(val1.f0, addAndDiv(val1.f1,val2.f1)); } } private static GeoTimeDataTupel addAndDiv(GeoTimeDataTupel input1, GeoTimeDataTupel input2){ long time = (input1.getTime()+input2.getTime())/2; List<LatLongSeriable> list = new ArrayList<LatLongSeriable>(); list.add(input1.getGeo()); list.add(input2.getGeo()); LatLongSeriable geo = Geometry.getGeoCenterOf(list); return new GeoTimeDataTupel(geo,time,"POINT"); } // computes new centroid from coordinate sum and count of points private static final class CentroidAverager implements MapFunction<Tuple2<Integer, GeoTimeDataTupel>, GeoTimeDataCenter> { private static final long serialVersionUID = -2687234478847261803L; public GeoTimeDataCenter map(Tuple2<Integer, GeoTimeDataTupel> value) { return new GeoTimeDataCenter(value.f0, value.f1.getGeo(),value.f1.getTime()); } } private static DataSet<GeoTimeDataTupel> getPointDataSet(ExecutionEnvironment env) { // load properties Properties pro = new Properties(); try { pro.load(new FileInputStream("./resources/config.properties")); } catch (Exception e) { e.printStackTrace(); } String inputFile = pro.getProperty("input"); // map csv file return env.readCsvFile(inputFile) .ignoreInvalidLines() .fieldDelimiter('\u0009') //.fieldDelimiter("\t") //.lineDelimiter("\n") .includeFields(true, true, false, false, false, false, false, false, false, false, false , false, false, false, false, false, false, false, false, false, false , false, false, false, false, false, false, false, false, false, false , false, false, false, false, false, false, false, false, true, true , false, false, false, false, false, false, false, false, false, false , false, false, false, false, false, false, false, false) //.includeFields(true,true,true,true) .types(String.class, Long.class, Double.class, Double.class) .map(new TuplePointConverter()); } private static final class TuplePointConverter implements MapFunction<Tuple4<String, Long, Double, Double>, GeoTimeDataTupel>{ private static final long serialVersionUID = 3485560278562719538L; public GeoTimeDataTupel map(Tuple4<String, Long, Double, Double> t) throws Exception { return new GeoTimeDataTupel(new LatLongSeriable(t.f2, t.f3), t.f1, t.f0); } } private static DataSet<GeoTimeDataCenter> getCentroidDataSet(ExecutionEnvironment env) { // load properties Properties pro = new Properties(); try { pro.load(new FileInputStream("./resources/config.properties")); } catch (Exception e) { e.printStackTrace(); } String seedFile = pro.getProperty("seed.file"); boolean seedFlag = Boolean.parseBoolean(pro.getProperty("seed.flag")); // get points from file or random if(seedFlag || !(new File(seedFile+"-1").exists())) { Seeding.randomSeeding(); } // map csv file return env.readCsvFile(seedFile+"-1") .lineDelimiter("\n") .fieldDelimiter('\u0009') //.fieldDelimiter("\t") .includeFields(true, true, true, true) .types(Integer.class, Double.class, Double.class, Long.class) .map(new TupleCentroidConverter()); } private static final class TupleCentroidConverter implements MapFunction<Tuple4<Integer, Double, Double, Long>, GeoTimeDataCenter>{ private static final long serialVersionUID = -1046538744363026794L; public GeoTimeDataCenter map(Tuple4<Integer, Double, Double, Long> t) throws Exception { return new GeoTimeDataCenter(t.f0,new LatLongSeriable(t.f1, t.f2), t.f3); } } } 2015-05-21 14:22 GMT+02:00 Till Rohrmann <[hidden email]>:
|
i have fix a bug at the input reading, but the results are still different. but in flink i sum two points and share thougt two, and sum the next...i think i have local the problem, in the other implementation i sum all geo points/time points and share thougt the counter. // sums and counts point coordinates private static final class CentroidAccumulator implements ReduceFunction<Tuple2<Integer, GeoTimeDataTupel>> { private static final long serialVersionUID = -4868797820391121771L; public Tuple2<Integer, GeoTimeDataTupel> reduce(Tuple2<Integer, GeoTimeDataTupel> val1, Tuple2<Integer, GeoTimeDataTupel> val2) { return new Tuple2<Integer, GeoTimeDataTupel>(val1.f0, addAndDiv(val1.f0,val1.f1,val2.f1)); } } private static GeoTimeDataTupel addAndDiv(int clusterid,GeoTimeDataTupel input1, GeoTimeDataTupel input2){ long time = (input1.getTime()+input2.getTime())/2; List<LatLongSeriable> list = new ArrayList<LatLongSeriable>(); list.add(input1.getGeo()); list.add(input2.getGeo()); LatLongSeriable geo = Geometry.getGeoCenterOf(list); return new GeoTimeDataTupel(geo,time,"POINT"); } 2015-05-22 9:53 GMT+02:00 Pa Rö <[hidden email]>:
|
Sorry, I don't understand the question. Can you describe a bit better what you mean with "how i can sum all points and share thoug the counter" ? Thanks! On Fri, May 22, 2015 at 2:06 PM, Pa Rö <[hidden email]> wrote:
|
good evening,
sorry, my english is not the best. by comupte the new centroid, i will sum all points of the cluster and form the new center. in my other implementation firstly i sum all point and at the end i divides by number of points. to example: (1+2+3+4)/4=2,5 at flink i reduce always two point to one, for the example upstairs: (1+2)/2=1,5 --> (1,5+3)/2=2,25 --> (2,25+4)=3,125 how can i rewrite my function so, that it work like my other implementation? best regards, paul Am 22.05.2015 um 16:52 schrieb Stephan
Ewen:
|
There are two ways to do that: 2) You use the ReduceFunction to compute the sum and the count at the same time (e.g., in two fields of a Tuple2) and use a MapFunction to do the final division.1) You use a GroupReduceFunction, which gives you an iterator over all points similar to Hadoop's ReduceFunction. 2015-05-22 23:09 GMT+02:00 Paul Röwer <[hidden email]>:
|
thanks for your message, maybe you can give me a exsample for the GroupReduceFunction?2015-05-22 23:29 GMT+02:00 Fabian Hueske <[hidden email]>:
|
Sure, here some pseudo code:} } This function computes the sum and the count of a group and the final average. Is this what you are looking for? 2015-05-26 11:34 GMT+02:00 Pa Rö <[hidden email]>:
|
Free forum by Nabble | Edit this page |