I have tried to persist Generic Avro records in a parquet file and then read it via ParquetTablesource – using SQL. Seems that the SQL I not executed properly ! The persisted records are : Id , type 3333333,Type1 222222,Type2 3333333,Type1 222222,Type2 3333333,Type1 222222,Type2 3333333,Type1 222222,Type2 3333333,Type1 222222,Type2 3333333,Type1 222222,Type2 While SQL of SELECT id ,recordType_ FROM ParquetTable -
return the above ( which is correct) Running : "SELECT id ,recordType_ FROM ParquetTable where recordType_='Type1' " Will result in : 3333333,Type1 222222,Type1 3333333,Type1 222222,Type1 3333333,Type1 222222,Type1 3333333,Type1 222222,Type1 3333333,Type1 222222,Type1 3333333,Type1 222222,Type1 As if the equal sign is assignment and not equal … |
Hi Hanan, Best Regards Peter Huang On Mon, Nov 18, 2019 at 2:51 AM Hanan Yehudai <[hidden email]> wrote: I have tried to persist Generic Avro records in a parquet file and then read it via ParquetTablesource – using SQL. |
HI
Peter. Thanks. This is my code . I used one of the parquet / avro tests as a reference. The code will fail on
Test testScan(ParquetTestCase) failed with: java.lang.UnsupportedOperationException at org.apache.parquet.filter2.recordlevel.IncrementallyUpdatedFilterPredicate$ValueInspector.update(IncrementallyUpdatedFilterPredicate.java:71) at org.apache.parquet.filter2.recordlevel.FilteringPrimitiveConverter.addLong(FilteringPrimitiveConverter.java:105) at org.apache.parquet.column.impl.ColumnReaderImpl$2$4.writeValue(ColumnReaderImpl.java:268) CODE :
import org.apache.avro.Schema; import org.apache.avro.generic.GenericRecord; import org.apache.avro.generic.GenericRecordBuilder; import org.apache.avro.specific.SpecificRecord; import org.apache.avro.specific.SpecificRecordBuilderBase; import org.apache.flink.api.common.typeinfo.Types; import org.apache.flink.api.java.DataSet; import org.apache.flink.api.java.ExecutionEnvironment; import org.apache.flink.api.java.io.ParallelIteratorInputFormat; import org.apache.flink.api.java.io.TupleCsvInputFormat; import org.apache.flink.api.java.tuple.Tuple; import org.apache.flink.core.fs.FileSystem; import org.apache.flink.core.fs.Path; import org.apache.flink.formats.parquet.ParquetTableSource; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction; import org.apache.flink.table.api.Table; import org.apache.flink.table.api.TableEnvironment; import org.apache.flink.table.api.java.BatchTableEnvironment; import org.apache.flink.table.api.java.StreamTableEnvironment; import org.apache.flink.table.sinks.CsvTableSink; import org.apache.flink.table.sinks.TableSink; import org.apache.flink.test.util.MultipleProgramsTestBase; import org.apache.flink.types.Row; import org.apache.avro.generic.IndexedRecord; import org.apache.parquet.avro.AvroSchemaConverter; import org.apache.parquet.schema.MessageType; import org.junit.BeforeClass; import org.junit.ClassRule; import org.junit.Test; import org.junit.rules.TemporaryFolder; import java.io.IOException; import java.util.ArrayList; import java.util.List; import java.util.UUID; import static org.junit.Assert.assertEquals; import org.apache.parquet.avro.AvroParquetWriter; import org.apache.parquet.hadoop.ParquetWriter; public class ParquetTestCase extends MultipleProgramsTestBase { private static String avroSchema = "{\n" + " \"name\": \"SimpleRecord\",\n" + " \"type\": \"record\",\n" + " \"fields\": [\n" + " { \"default\": null, \"name\": \"timestamp_edr\", \"type\": [ \"null\", \"long\" ]},\n" + " { \"default\": null, \"name\": \"id\", \"type\": [ \"null\", \"long\" ]},\n" + " { \"default\": null, \"name\": \"recordType_\", \"type\": [ \"null\", \"string\"]}\n" + " ],\n" + " \"schema_id\": 1,\n" + " \"type\": \"record\"\n" + "}"; private static final AvroSchemaConverter SCHEMA_CONVERTER = new AvroSchemaConverter(); private static Schema schm = new Schema.Parser().parse(avroSchema); private static Path testPath; public ParquetTestCase() { super(TestExecutionMode.COLLECTION); } @BeforeClass public static void setup() throws Exception { GenericRecordBuilder genericRecordBuilder = new GenericRecordBuilder(schm); List<IndexedRecord> recs = new ArrayList<>(); for (int i = 0; i < 6; i++) { GenericRecord gr = genericRecordBuilder.set("timestamp_edr", System.currentTimeMillis() / 1000).set("id", 3333333L).set("recordType_", "Type1").build(); recs.add(gr); GenericRecord gr2 = genericRecordBuilder.set("timestamp_edr", System.currentTimeMillis() / 1000).set("id", 222222L).set("recordType_", "Type2").build(); recs.add(gr2); } testPath = new Path("/tmp", UUID.randomUUID().toString()); ParquetWriter<IndexedRecord> writer = AvroParquetWriter.<IndexedRecord>builder( new org.apache.hadoop.fs.Path(testPath.toUri())).withSchema(schm).build(); for (IndexedRecord record : recs) { writer.write(record); } writer.close(); } private ParquetTableSource createParquetTableSource(Path path) throws IOException { MessageType nestedSchema = SCHEMA_CONVERTER.convert(schm); ParquetTableSource parquetTableSource = ParquetTableSource.builder() .path(path.getPath()) .forParquetSchema(nestedSchema) .build(); return parquetTableSource; } @Test public void testScan() throws Exception { ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); BatchTableEnvironment batchTableEnvironment = BatchTableEnvironment.create(env); ParquetTableSource tableSource = createParquetTableSource(testPath); batchTableEnvironment.registerTableSource("ParquetTable", tableSource); Table tab = batchTableEnvironment.sqlQuery("select id,recordType_ from ParquetTable where id > 222222 "); DataSet<Row> result = batchTableEnvironment.toDataSet(tab, Row.class); result.print(); } } From: Peter Huang <[hidden email]>
Hi Hanan, Thanks for reporting the issue. Would you please attach your test code here? I may help to investigate. Best Regards Peter Huang On Mon, Nov 18, 2019 at 2:51 AM Hanan Yehudai <[hidden email]> wrote:
|
Hi Hanan, After investigating the issue by using the test case you provided, I think there is a big in it. Currently, the parquet predicts push down use the predicate literal type to construct the FilterPredicate. The issue happens when the data type of value in predicate inferred from SQL doesn't match the parquet schema. For example, foo is a long type, foo < 1 is the predicate. Literal will be recognized as an integration. It causes the parquet FilterPredicate is mistakenly created for the column of Integer type. I created a ticket for the issue. https://issues.apache.org/jira/browse/FLINK-14953. Please also add more insight by comment directly on it. Best Regards Peter Huang On Mon, Nov 18, 2019 at 12:40 PM Hanan Yehudai <[hidden email]> wrote:
|
Hi Hanan, I created a fix for the problem. Would you please try it from your side? Best Regards Peter Huang On Tue, Nov 26, 2019 at 8:07 AM Peter Huang <[hidden email]> wrote:
|
Free forum by Nabble | Edit this page |