| 
					
	
	 Hello, I am experimenting with the Python DataStream API in Flink 1.13, in order to confirm that it is a viable fit for our needs, basically trying to prove that what can be done in the Java DataStream API also works in Python. During testing of a processing pipeline, I encountered a problem at the initialization of the job on my cluster. Currently, I am running Flink on a local Docker cluster consisting of a JobManager and a TaskManager (created from the same image) with the following jars installed on the containers: flink-csv-1.13.0.jar flink-json-1.13.0.jar flink-sql-connector-kafka_2.12-1.13.0.jar flink-table_2.12-1.13.0.jar log4j-api-2.12.1.jar log4j-slf4j-impl-2.12.1.jar Whenever I try to submit the job with jobmanager, the same exception stack is thrown: org.apache.flink.runtime.JobException: Recovery is suppressed by NoRestartBackoffTimeStrategy     at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.handleFailure(ExecutionFailureHandler.java:138)     at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.getFailureHandlingResult(ExecutionFailureHandler.java:82)     at org.apache.flink.runtime.scheduler.DefaultScheduler.handleTaskFailure(DefaultScheduler.java:207)     at org.apache.flink.runtime.scheduler.DefaultScheduler.maybeHandleTaskFailure(DefaultScheduler.java:197)     at org.apache.flink.runtime.scheduler.DefaultScheduler.updateTaskExecutionStateInternal(DefaultScheduler.java:188)     at org.apache.flink.runtime.scheduler.SchedulerBase.updateTaskExecutionState(SchedulerBase.java:677)     at org.apache.flink.runtime.scheduler.SchedulerNG.updateTaskExecutionState(SchedulerNG.java:79)     at org.apache.flink.runtime.jobmaster.JobMaster.updateTaskExecutionState(JobMaster.java:435)     at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)     at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)     at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)     at java.lang.reflect.Method.invoke(Method.java:498)     at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcInvocation(AkkaRpcActor.java:305)     at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcMessage(AkkaRpcActor.java:212)     at org.apache.flink.runtime.rpc.akka.FencedAkkaRpcActor.handleRpcMessage(FencedAkkaRpcActor.java:77)     at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleMessage(AkkaRpcActor.java:158)     at scala.PartialFunction.applyOrElse(PartialFunction.scala:123)     at scala.PartialFunction.applyOrElse$(PartialFunction.scala:122)     at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:171)     at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:172)     at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:172)     at akka.actor.Actor.aroundReceive(Actor.scala:517)     at akka.actor.Actor.aroundReceive$(Actor.scala:515)     at akka.actor.AbstractActor.aroundReceive(AbstractActor.scala:225)     at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592)     at akka.actor.ActorCell.invoke(ActorCell.scala:561)     at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258)     at akka.dispatch.Mailbox.run(Mailbox.scala:225)     at akka.dispatch.Mailbox.exec(Mailbox.scala:235)     at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)     at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)     at akka.dispatch.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)     at akka.dispatch.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) Caused by: java.lang.RuntimeException: Failed to start remote bundle     at org.apache.flink.streaming.api.runners.python.beam.BeamPythonFunctionRunner.startBundle(BeamPythonFunctionRunner.java:375)     at org.apache.flink.streaming.api.runners.python.beam.BeamPythonFunctionRunner.checkInvokeStartBundle(BeamPythonFunctionRunner.java:436)     at org.apache.flink.streaming.api.runners.python.beam.BeamPythonFunctionRunner.process(BeamPythonFunctionRunner.java:311)     at org.apache.flink.streaming.api.operators.python.OneInputPythonFunctionOperator.processElement(OneInputPythonFunctionOperator.java:167)     at org.apache.flink.streaming.runtime.tasks.CopyingChainingOutput.pushToOperator(CopyingChainingOutput.java:71)     at org.apache.flink.streaming.runtime.tasks.CopyingChainingOutput.collect(CopyingChainingOutput.java:46)     at org.apache.flink.streaming.runtime.tasks.CopyingChainingOutput.collect(CopyingChainingOutput.java:26)     at org.apache.flink.streaming.api.operators.CountingOutput.collect(CountingOutput.java:50)     at org.apache.flink.streaming.api.operators.CountingOutput.collect(CountingOutput.java:28)     at org.apache.flink.streaming.api.operators.StreamSourceContexts$ManualWatermarkContext.processAndCollectWithTimestamp(StreamSourceContexts.java:322)     at org.apache.flink.streaming.api.operators.StreamSourceContexts$WatermarkContext.collectWithTimestamp(StreamSourceContexts.java:426)     at org.apache.flink.streaming.connectors.kafka.internals.AbstractFetcher.emitRecordsWithTimestamps(AbstractFetcher.java:365)     at org.apache.flink.streaming.connectors.kafka.internals.KafkaFetcher.partitionConsumerRecordsHandler(KafkaFetcher.java:183)     at org.apache.flink.streaming.connectors.kafka.internals.KafkaFetcher.runFetchLoop(KafkaFetcher.java:142)     at org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.run(FlinkKafkaConsumerBase.java:826)     at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:110)     at org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:66)     at org.apache.flink.streaming.runtime.tasks.SourceStreamTask$LegacySourceFunctionThread.run(SourceStreamTask.java:269) Caused by: java.lang.RuntimeException: No client connected within timeout     at org.apache.beam.runners.fnexecution.data.GrpcDataService.send(GrpcDataService.java:192)     at org.apache.beam.runners.fnexecution.control.SdkHarnessClient$BundleProcessor.newBundle(SdkHarnessClient.java:287)     at org.apache.beam.runners.fnexecution.control.SdkHarnessClient$BundleProcessor.newBundle(SdkHarnessClient.java:197)     at org.apache.beam.runners.fnexecution.control.DefaultJobBundleFactory$SimpleStageBundleFactory.getBundle(DefaultJobBundleFactory.java:519)     at org.apache.beam.runners.fnexecution.control.StageBundleFactory.getBundle(StageBundleFactory.java:87)     at org.apache.beam.runners.fnexecution.control.StageBundleFactory.getBundle(StageBundleFactory.java:76)     at org.apache.beam.runners.fnexecution.control.StageBundleFactory.getBundle(StageBundleFactory.java:40)     at org.apache.flink.streaming.api.runners.python.beam.BeamPythonFunctionRunner.startBundle(BeamPythonFunctionRunner.java:368)     ... 17 more Caused by: java.util.concurrent.TimeoutException: Waited 3 minutes for org.apache.beam.vendor.guava.v26_0_jre.com.google.common.util.concurrent.SettableFuture@32c3875d[status=PENDING]     at org.apache.beam.vendor.guava.v26_0_jre.com.google.common.util.concurrent.AbstractFuture.get(AbstractFuture.java:471)     at org.apache.beam.vendor.guava.v26_0_jre.com.google.common.util.concurrent.AbstractFuture$TrustedFuture.get(AbstractFuture.java:90)     at org.apache.beam.runners.fnexecution.data.GrpcDataService.send(GrpcDataService.java:187)     ... 24 more I try to execute the datastream_consumer.py job (sent as attachment) by running `flink run -py datastream_consumer.py` on the jobmanager container. The pipeline collects data from Kafka and generates new events based on the ones it gathers, which are then also placed back into a different Kafka topic. The input topic contains events in json format, I also provide a sample event in the test_event.json attachment. Am I doing something wrong, or do I need some other libraries to be present on the job/task-manager images? I need some help in identifying what the actual cause of the problem is.  | 
			
| 
					
	
	 
		It seems that there is something wrong during starting up the Python process. Have you installed Python 3 and also PyFlink in the docker image?  
				Besides, you could take a look at the log of TaskManager and to see whether there are logs about the reason why the Python process starts up failed. Regards, Dian 
	
	
	
	
  | 
			
| Free forum by Nabble | Edit this page | 
	
	
		