Flink 1.11 avro format question

classic Classic list List threaded Threaded
8 messages Options
Reply | Threaded
Open this post in threaded view
|

Flink 1.11 avro format question

Hongjian Peng
Hi Flink Community,

We are trying to upgrade our Flink SQL job from 1.10 to 1.11. We used Kafka source table, and the data is stored in Kafka in Avro format.
Schema is like this:

{
  "type": "record",
  "name": "event",
  "namespace": "busseniss.event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": "long"
          },
          {
            "name": "sentTimestamp",
            "type": "long"
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      },
      "doc": "Rheos header "
    },
    {
      "name": "si",
      "type": [
        "null",
        "string"
      ]
    }
]
}






--

Hongjian Peng
Department of Computer Science and Engineering
Shanghai Jiao Tong University
Reply | Threaded
Open this post in threaded view
|

Re:Flink 1.11 avro format question

Hongjian Peng
In Flink 1.10, we can pass this schema with 'format.avro-schema' property to SQL DDL, but in Flink 1.11, the Avro schema is always derived from the table schema.
We have two questions about the Flink 1.11 Avro format:

1. Flink 1.11 maps nullable types to Avro union(something, null). How to map the nullable types to union(null, something)? In our schema definition, we follow the Avro recommended definition, list 'null' as the first type. With Flink default mapping, the AvroRowDataDeserializationSchema will get the wrong/error result when lists 'null' as the first type of union.

2. Now if we want to set the field in a Row to non-nullable, we have to set the Row to non-nullable firstly. Is it the expected behavior of the Avro format?
For example,
event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> will be maped to Avro schema:

{
  "type": "record",
  "name": "event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": ["long",null]
          },
          {
            "name": "sentTimestamp",
             "type": ["long",null]
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      }
    }
]
}

We have to use "event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> NOT NULL" to make the NOT NULL of fields: createTimestamp and sentTimestamp works.





At 2020-11-25 16:12:58, "Hongjian Peng" <[hidden email]> wrote:

Hi Flink Community,

We are trying to upgrade our Flink SQL job from 1.10 to 1.11. We used Kafka source table, and the data is stored in Kafka in Avro format.
Schema is like this:

{
  "type": "record",
  "name": "event",
  "namespace": "busseniss.event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": "long"
          },
          {
            "name": "sentTimestamp",
            "type": "long"
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      },
      "doc": "Rheos header "
    },
    {
      "name": "si",
      "type": [
        "null",
        "string"
      ]
    }
]
}






--

Hongjian Peng
Department of Computer Science and Engineering
Shanghai Jiao Tong University
Reply | Threaded
Open this post in threaded view
|

Re: Flink 1.11 avro format question

Danny Chan-2
Hi Hongjian Peng ~

For your question 1, it is not work as expected. If it is true, there is definitely a bug. I would check and fix it later.

For your question 2, yes. This is an intent design. There is a routine in the type inference: all the fields of a nullable struct type should also be nullable.

Hongjian Peng <[hidden email]>于2020年11月25日 周三下午4:45写道:
In Flink 1.10, we can pass this schema with 'format.avro-schema' property to SQL DDL, but in Flink 1.11, the Avro schema is always derived from the table schema.
We have two questions about the Flink 1.11 Avro format:

1. Flink 1.11 maps nullable types to Avro union(something, null). How to map the nullable types to union(null, something)? In our schema definition, we follow the Avro recommended definition, list 'null' as the first type. With Flink default mapping, the AvroRowDataDeserializationSchema will get the wrong/error result when lists 'null' as the first type of union.

2. Now if we want to set the field in a Row to non-nullable, we have to set the Row to non-nullable firstly. Is it the expected behavior of the Avro format?
For example,
event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> will be maped to Avro schema:

{
  "type": "record",
  "name": "event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": ["long",null]
          },
          {
            "name": "sentTimestamp",
             "type": ["long",null]
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      }
    }
]
}

We have to use "event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> NOT NULL" to make the NOT NULL of fields: createTimestamp and sentTimestamp works.





At 2020-11-25 16:12:58, "Hongjian Peng" <[hidden email]> wrote:

Hi Flink Community,

We are trying to upgrade our Flink SQL job from 1.10 to 1.11. We used Kafka source table, and the data is stored in Kafka in Avro format.
Schema is like this:

{
  "type": "record",
  "name": "event",
  "namespace": "busseniss.event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": "long"
          },
          {
            "name": "sentTimestamp",
            "type": "long"
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      },
      "doc": "Rheos header "
    },
    {
      "name": "si",
      "type": [
        "null",
        "string"
      ]
    }
]
}






--

Hongjian Peng
Department of Computer Science and Engineering
Shanghai Jiao Tong University
Reply | Threaded
Open this post in threaded view
|

Re: Flink 1.11 avro format question

Danny Chan-2
In reply to this post by Hongjian Peng
For your question 1. This does not work as expected. I would check it soon to see if it is a bug and fire a fix.

Hongjian Peng <[hidden email]>于2020年11月25日 周三下午4:45写道:
In Flink 1.10, we can pass this schema with 'format.avro-schema' property to SQL DDL, but in Flink 1.11, the Avro schema is always derived from the table schema.
We have two questions about the Flink 1.11 Avro format:

1. Flink 1.11 maps nullable types to Avro union(something, null). How to map the nullable types to union(null, something)? In our schema definition, we follow the Avro recommended definition, list 'null' as the first type. With Flink default mapping, the AvroRowDataDeserializationSchema will get the wrong/error result when lists 'null' as the first type of union.

2. Now if we want to set the field in a Row to non-nullable, we have to set the Row to non-nullable firstly. Is it the expected behavior of the Avro format?
For example,
event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> will be maped to Avro schema:

{
  "type": "record",
  "name": "event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": ["long",null]
          },
          {
            "name": "sentTimestamp",
             "type": ["long",null]
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      }
    }
]
}

We have to use "event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> NOT NULL" to make the NOT NULL of fields: createTimestamp and sentTimestamp works.





At 2020-11-25 16:12:58, "Hongjian Peng" <[hidden email]> wrote:

Hi Flink Community,

We are trying to upgrade our Flink SQL job from 1.10 to 1.11. We used Kafka source table, and the data is stored in Kafka in Avro format.
Schema is like this:

{
  "type": "record",
  "name": "event",
  "namespace": "busseniss.event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": "long"
          },
          {
            "name": "sentTimestamp",
            "type": "long"
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      },
      "doc": "Rheos header "
    },
    {
      "name": "si",
      "type": [
        "null",
        "string"
      ]
    }
]
}






--

Hongjian Peng
Department of Computer Science and Engineering
Shanghai Jiao Tong University
Reply | Threaded
Open this post in threaded view
|

Re: Flink 1.11 avro format question

Dawid Wysakowicz-2
In reply to this post by Hongjian Peng

Hi,

Just wanted to comment on:

How to map the nullable types to union(null, something)? In our schema definition, we follow the Avro recommended definition, list 'null' as the first type.

I've also spotted that problem and it will be fixed in 1.12 in https://issues.apache.org/jira/browse/FLINK-20175

Best,

Dawid

On 25/11/2020 09:44, Hongjian Peng wrote:
In Flink 1.10, we can pass this schema with 'format.avro-schema' property to SQL DDL, but in Flink 1.11, the Avro schema is always derived from the table schema.
We have two questions about the Flink 1.11 Avro format:

1. Flink 1.11 maps nullable types to Avro union(something, null). How to map the nullable types to union(null, something)? In our schema definition, we follow the Avro recommended definition, list 'null' as the first type. With Flink default mapping, the AvroRowDataDeserializationSchema will get the wrong/error result when lists 'null' as the first type of union.

2. Now if we want to set the field in a Row to non-nullable, we have to set the Row to non-nullable firstly. Is it the expected behavior of the Avro format?
For example,
event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> will be maped to Avro schema:

{
  "type": "record",
  "name": "event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": ["long",null]
          },
          {
            "name": "sentTimestamp",
             "type": ["long",null]
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      }
    }
]
}

We have to use "event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> NOT NULL" to make the NOT NULL of fields: createTimestamp and sentTimestamp works.





At 2020-11-25 16:12:58, "Hongjian Peng" [hidden email] wrote:

Hi Flink Community,

We are trying to upgrade our Flink SQL job from 1.10 to 1.11. We used Kafka source table, and the data is stored in Kafka in Avro format.
Schema is like this:

{
  "type": "record",
  "name": "event",
  "namespace": "busseniss.event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": "long"
          },
          {
            "name": "sentTimestamp",
            "type": "long"
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      },
      "doc": "Rheos header "
    },
    {
      "name": "si",
      "type": [
        "null",
        "string"
      ]
    }
]
}






--

Hongjian Peng
Department of Computer Science and Engineering
Shanghai Jiao Tong University

signature.asc (849 bytes) Download Attachment
Reply | Threaded
Open this post in threaded view
|

Re:Re: Flink 1.11 avro format question

Hongjian Peng
Thanks for Danny and Dawid's quick reply.

But we may not move to Flink 1.12 in the near future. Does the community have a plan to push the fix back to 1.11?





--

Thanks,
Hongjian Peng


At 2020-11-25 22:26:32, "Dawid Wysakowicz" <[hidden email]> wrote:

Hi,

Just wanted to comment on:

How to map the nullable types to union(null, something)? In our schema definition, we follow the Avro recommended definition, list 'null' as the first type.

I've also spotted that problem and it will be fixed in 1.12 in https://issues.apache.org/jira/browse/FLINK-20175

Best,

Dawid

On 25/11/2020 09:44, Hongjian Peng wrote:
In Flink 1.10, we can pass this schema with 'format.avro-schema' property to SQL DDL, but in Flink 1.11, the Avro schema is always derived from the table schema.
We have two questions about the Flink 1.11 Avro format:

1. Flink 1.11 maps nullable types to Avro union(something, null). How to map the nullable types to union(null, something)? In our schema definition, we follow the Avro recommended definition, list 'null' as the first type. With Flink default mapping, the AvroRowDataDeserializationSchema will get the wrong/error result when lists 'null' as the first type of union.

2. Now if we want to set the field in a Row to non-nullable, we have to set the Row to non-nullable firstly. Is it the expected behavior of the Avro format?
For example,
event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> will be maped to Avro schema:

{
  "type": "record",
  "name": "event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": ["long",null]
          },
          {
            "name": "sentTimestamp",
             "type": ["long",null]
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      }
    }
]
}

We have to use "event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> NOT NULL" to make the NOT NULL of fields: createTimestamp and sentTimestamp works.





At 2020-11-25 16:12:58, "Hongjian Peng" [hidden email] wrote:

Hi Flink Community,

We are trying to upgrade our Flink SQL job from 1.10 to 1.11. We used Kafka source table, and the data is stored in Kafka in Avro format.
Schema is like this:

{
  "type": "record",
  "name": "event",
  "namespace": "busseniss.event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": "long"
          },
          {
            "name": "sentTimestamp",
            "type": "long"
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      },
      "doc": "Rheos header "
    },
    {
      "name": "si",
      "type": [
        "null",
        "string"
      ]
    }
]
}






--

Hongjian Peng
Department of Computer Science and Engineering
Shanghai Jiao Tong University
Reply | Threaded
Open this post in threaded view
|

Re: Flink 1.11 avro format question

Dawid Wysakowicz-2

Hi,

I managed to backport the change to the 1.11 branch. It should be part of the 1.11.3 release.

Best,

Dawid

On 25/11/2020 16:23, Hongjian Peng wrote:
Thanks for Danny and Dawid's quick reply.

But we may not move to Flink 1.12 in the near future. Does the community have a plan to push the fix back to 1.11?





--

Thanks,
Hongjian Peng


At 2020-11-25 22:26:32, "Dawid Wysakowicz" [hidden email] wrote:

Hi,

Just wanted to comment on:

How to map the nullable types to union(null, something)? In our schema definition, we follow the Avro recommended definition, list 'null' as the first type.

I've also spotted that problem and it will be fixed in 1.12 in https://issues.apache.org/jira/browse/FLINK-20175

Best,

Dawid

On 25/11/2020 09:44, Hongjian Peng wrote:
In Flink 1.10, we can pass this schema with 'format.avro-schema' property to SQL DDL, but in Flink 1.11, the Avro schema is always derived from the table schema.
We have two questions about the Flink 1.11 Avro format:

1. Flink 1.11 maps nullable types to Avro union(something, null). How to map the nullable types to union(null, something)? In our schema definition, we follow the Avro recommended definition, list 'null' as the first type. With Flink default mapping, the AvroRowDataDeserializationSchema will get the wrong/error result when lists 'null' as the first type of union.

2. Now if we want to set the field in a Row to non-nullable, we have to set the Row to non-nullable firstly. Is it the expected behavior of the Avro format?
For example,
event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> will be maped to Avro schema:

{
  "type": "record",
  "name": "event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": ["long",null]
          },
          {
            "name": "sentTimestamp",
             "type": ["long",null]
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      }
    }
]
}

We have to use "event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> NOT NULL" to make the NOT NULL of fields: createTimestamp and sentTimestamp works.





At 2020-11-25 16:12:58, "Hongjian Peng" [hidden email] wrote:

Hi Flink Community,

We are trying to upgrade our Flink SQL job from 1.10 to 1.11. We used Kafka source table, and the data is stored in Kafka in Avro format.
Schema is like this:

{
  "type": "record",
  "name": "event",
  "namespace": "busseniss.event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": "long"
          },
          {
            "name": "sentTimestamp",
            "type": "long"
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      },
      "doc": "Rheos header "
    },
    {
      "name": "si",
      "type": [
        "null",
        "string"
      ]
    }
]
}






--

Hongjian Peng
Department of Computer Science and Engineering
Shanghai Jiao Tong University

signature.asc (849 bytes) Download Attachment
Reply | Threaded
Open this post in threaded view
|

Re: Flink 1.11 avro format question

Hongjian Peng

Thank you for the help.





--

Thanks,
Hongjian Peng


At 2020-11-30 16:16:48, "Dawid Wysakowicz" <[hidden email]> wrote:

Hi,

I managed to backport the change to the 1.11 branch. It should be part of the 1.11.3 release.

Best,

Dawid

On 25/11/2020 16:23, Hongjian Peng wrote:
Thanks for Danny and Dawid's quick reply.

But we may not move to Flink 1.12 in the near future. Does the community have a plan to push the fix back to 1.11?





--

Thanks,
Hongjian Peng


At 2020-11-25 22:26:32, "Dawid Wysakowicz" [hidden email] wrote:

Hi,

Just wanted to comment on:

How to map the nullable types to union(null, something)? In our schema definition, we follow the Avro recommended definition, list 'null' as the first type.

I've also spotted that problem and it will be fixed in 1.12 in https://issues.apache.org/jira/browse/FLINK-20175

Best,

Dawid

On 25/11/2020 09:44, Hongjian Peng wrote:
In Flink 1.10, we can pass this schema with 'format.avro-schema' property to SQL DDL, but in Flink 1.11, the Avro schema is always derived from the table schema.
We have two questions about the Flink 1.11 Avro format:

1. Flink 1.11 maps nullable types to Avro union(something, null). How to map the nullable types to union(null, something)? In our schema definition, we follow the Avro recommended definition, list 'null' as the first type. With Flink default mapping, the AvroRowDataDeserializationSchema will get the wrong/error result when lists 'null' as the first type of union.

2. Now if we want to set the field in a Row to non-nullable, we have to set the Row to non-nullable firstly. Is it the expected behavior of the Avro format?
For example,
event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> will be maped to Avro schema:

{
  "type": "record",
  "name": "event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": ["long",null]
          },
          {
            "name": "sentTimestamp",
             "type": ["long",null]
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      }
    }
]
}

We have to use "event ROW< createTimestamp BIGINT NOT NULL, sentTimestamp BIGINT NOT NULL, eventId VARCHAR> NOT NULL" to make the NOT NULL of fields: createTimestamp and sentTimestamp works.





At 2020-11-25 16:12:58, "Hongjian Peng" [hidden email] wrote:

Hi Flink Community,

We are trying to upgrade our Flink SQL job from 1.10 to 1.11. We used Kafka source table, and the data is stored in Kafka in Avro format.
Schema is like this:

{
  "type": "record",
  "name": "event",
  "namespace": "busseniss.event",
  "fields": [
    {
      "name": "header",
      "type": {
        "type": "record",
        "name": "header",
        "fields": [
          {
            "name": "createTimestamp",
            "type": "long"
          },
          {
            "name": "sentTimestamp",
            "type": "long"
          },
          {
            "name": "eventId",
            "type": [
              "null",
              {
                "type": "string",
                "avro.java.string": "String"
              }
            ]
          }
        ]
      },
      "doc": "Rheos header "
    },
    {
      "name": "si",
      "type": [
        "null",
        "string"
      ]
    }
]
}






--

Hongjian Peng
Department of Computer Science and Engineering
Shanghai Jiao Tong University