Data+control stream from kafka + window function - not working

classic Classic list List threaded Threaded
7 messages Options
Reply | Threaded
Open this post in threaded view
|

Data+control stream from kafka + window function - not working

Tarandeep Singh
Hi,

I am using flink-1.2 and reading data stream from Kafka (using FlinkKafkaConsumer08). I want to connect this data stream with another stream (read control stream) so as to do some filtering on the fly. After filtering, I am applying window function (tumbling/sliding event window) along with fold function. However, the window function does not get called.

Any help to debug/fix this is greatly appreciated!

Below is a reproducible code that one can run in IDE like IntelliJ or on flink cluster. You will need to have a running Kafka cluster (local or otherwise).
Create a topic and add test data points-

$KAFKA_HOME/bin/kafka-topics.sh --create --topic test --zookeeper localhost:2181 --replication-factor 1 --partitions 1
$KAFKA_HOME/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test < small_input.csv

where small_input.csv contains the following lines-

p1,10.0f,2017-03-14 16:01:01
p1,10.0f,2017-03-14 16:01:02
p1,10.0f,2017-03-14 16:01:03
p1,10.0f,2017-03-14 16:01:04
p1,10.0f,2017-03-14 16:01:05
p1,10.0f,2017-03-14 16:01:10
p1,10.0f,2017-03-14 16:01:11
p1,10.0f,2017-03-14 16:01:12
p1,10.0f,2017-03-14 16:01:40
p1,10.0f,2017-03-14 16:01:50

Now you can run the code given below. Note:

1) In this example, I am not reading control stream from Kafka (but issue can be reproduced with this code as well)
2) If instead of reading data stream from kafka, I create stream from elements (i.e. use getInput function instead of getKafkaInput function), the code works and window function is fired.

Thanks,
Tarandeep



import org.apache.flink.api.common.functions.FoldFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.RichCoFlatMapFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.RichWindowFunction;
import org.apache.flink.streaming.api.operators.AbstractStreamOperator;
import org.apache.flink.streaming.api.operators.OneInputStreamOperator;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer08;
import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.util.Collector;

import java.io.IOException;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.*;

public class Test3 {

public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

//DataStream<Product> product = getInput(env);
DataStream<Product> product = getKafkaInput(env);
DataStream<Tuple1<String>> control= getControl(env);

DataStream<Product> filteredStream = product.keyBy(0)
.connect(control.keyBy(0))
.flatMap(new CoFlatMapFunImpl());

DataStream<Product> watermarkedStream = filteredStream.assignTimestampsAndWatermarks(
getTimestampAssigner(Time.seconds(1))).setParallelism(3);

watermarkedStream.transform("WatermarkDebugger", watermarkedStream.getType(), new WatermarkDebugger<Product>());

watermarkedStream
.keyBy(0)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.fold(new NameCount("", 0), new FoldFunImpl(), new WindowFunImpl())
.print();

env.execute();
}

/**
* If instead of reading from Kafka, create stream from elements, the
* code works and window function is fired!
*/
private static DataStream<Product> getInput(StreamExecutionEnvironment env) {
return env.fromCollection(Arrays.asList(
new Product("p1",10.0f,"2017-03-14 16:01:01"),
new Product("p1",10.0f,"2017-03-14 16:01:02"),
new Product("p1",10.0f,"2017-03-14 16:01:03"),
new Product("p1",10.0f,"2017-03-14 16:01:04"),
new Product("p1",10.0f,"2017-03-14 16:01:05"),
new Product("p1",10.0f,"2017-03-14 16:01:10"),
new Product("p1",10.0f,"2017-03-14 16:01:11"),
new Product("p1",10.0f,"2017-03-14 16:01:12"),
new Product("p1",10.0f,"2017-03-14 16:01:40"),
new Product("p1",10.0f,"2017-03-14 16:01:50")
));
}

private static DataStream<Product> getKafkaInput(StreamExecutionEnvironment env) throws IOException {
DataStream<String> s = readKafkaStream("test", env);

return s.map(new MapFunction<String, Product>() {
@Override
public Product map(String s) throws Exception {
String[] fields = s.split(",");
return new Product(fields[0], Float.parseFloat(fields[1]), fields[2]);
}
});
}

private static DataStream<Tuple1<String>> getControl(StreamExecutionEnvironment env) {
return env.fromElements(new Tuple1<>("p1"));
}

private static class CoFlatMapFunImpl extends RichCoFlatMapFunction<Product, Tuple1<String>,Product> {

private Set<String> productNames = new HashSet<>(Arrays.asList("p1"));

@Override
public void flatMap1(Product product, Collector<Product> collector) throws Exception {
if (productNames.contains(product.f0)) {
collector.collect(product);
System.out.println("Retaining product " + product + " in data stream");
}
}

@Override
public void flatMap2(Tuple1<String> t, Collector<Product> collector) throws Exception {
productNames.add(t.f0);
System.out.println("Adding product to set:" + t.f0);
}
}

private static class FoldFunImpl implements FoldFunction<Product,NameCount> {
@Override
public NameCount fold(NameCount current, Product p) throws Exception {
current.f0 = p.f0;
current.f1 += 1;
return current;
}
}

/**
* WINDOW FUNCTION NEVER GETS CALLED.
*/
private static class WindowFunImpl extends RichWindowFunction<NameCount,NameCount,Tuple,TimeWindow> {
@Override
public void apply(Tuple key, TimeWindow timeWindow, Iterable<NameCount> iterable,
Collector<NameCount> collector) throws Exception {
NameCount nc = iterable.iterator().next();
collector.collect(nc);
System.out.println("WINDOW: start time: " + new Date(timeWindow.getStart()) + " " + nc);
}
}

private static BoundedOutOfOrdernessTimestampExtractor<Product> getTimestampAssigner(final Time maxOutOfOrderness) {
final DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

return new BoundedOutOfOrdernessTimestampExtractor<Product>(maxOutOfOrderness) {
@Override
public long extractTimestamp(Product p) {
long ts = 0L;
try {
ts = dateFormat.parse(p.f2).getTime();
} catch (Exception e) {}
return ts;
}
};
}

public static class Product extends Tuple3<String,Float,String> {
public Product() {}
public Product(String name, Float price, String dateTime) {
super(name, price, dateTime);
}
}

public static class NameCount extends Tuple2<String,Integer> {
public NameCount() {}
public NameCount(String name, Integer count) {
super(name, count);
}
}

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

public static class WatermarkDebugger<T>
extends AbstractStreamOperator<T> implements OneInputStreamOperator<T, T> {
private static final long serialVersionUID = 1L;

@Override
public void processElement(StreamRecord<T> element) throws Exception {
System.out.println("ELEMENT: " + element);
output.collect(element);
}

@Override
public void processWatermark(Watermark mark) throws Exception {
super.processWatermark(mark);
System.out.println("WM: " + mark);
}
}
}


Reply | Threaded
Open this post in threaded view
|

Re: Data+control stream from kafka + window function - not working

Tzu-Li (Gordon) Tai
Hi Tarandeep,

I haven’t looked at the rest of the code yet, but my first guess is that you might not be reading any data from Kafka at all:

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

Have you tried using a different “group.id” everytime you’re re-running the job?
Note that the “auto.offset.reset” value is only respected when there aren’t any offsets for the group committed in Kafka.
So you might not actually be reading the complete “small_input.cv” dataset, unless you use a different group.id overtime.

Cheers,
Gordon

On March 16, 2017 at 2:39:10 PM, Tarandeep Singh ([hidden email]) wrote:

Hi,

I am using flink-1.2 and reading data stream from Kafka (using FlinkKafkaConsumer08). I want to connect this data stream with another stream (read control stream) so as to do some filtering on the fly. After filtering, I am applying window function (tumbling/sliding event window) along with fold function. However, the window function does not get called.

Any help to debug/fix this is greatly appreciated!

Below is a reproducible code that one can run in IDE like IntelliJ or on flink cluster. You will need to have a running Kafka cluster (local or otherwise).
Create a topic and add test data points-

$KAFKA_HOME/bin/kafka-topics.sh --create --topic test --zookeeper localhost:2181 --replication-factor 1 --partitions 1
$KAFKA_HOME/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test < small_input.csv

where small_input.csv contains the following lines-

p1,10.0f,2017-03-14 16:01:01
p1,10.0f,2017-03-14 16:01:02
p1,10.0f,2017-03-14 16:01:03
p1,10.0f,2017-03-14 16:01:04
p1,10.0f,2017-03-14 16:01:05
p1,10.0f,2017-03-14 16:01:10
p1,10.0f,2017-03-14 16:01:11
p1,10.0f,2017-03-14 16:01:12
p1,10.0f,2017-03-14 16:01:40
p1,10.0f,2017-03-14 16:01:50

Now you can run the code given below. Note:

1) In this example, I am not reading control stream from Kafka (but issue can be reproduced with this code as well)
2) If instead of reading data stream from kafka, I create stream from elements (i.e. use getInput function instead of getKafkaInput function), the code works and window function is fired.

Thanks,
Tarandeep



import org.apache.flink.api.common.functions.FoldFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.RichCoFlatMapFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.RichWindowFunction;
import org.apache.flink.streaming.api.operators.AbstractStreamOperator;
import org.apache.flink.streaming.api.operators.OneInputStreamOperator;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer08;
import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.util.Collector;

import java.io.IOException;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.*;

public class Test3 {

public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

//DataStream<Product> product = getInput(env);
DataStream<Product> product = getKafkaInput(env);
DataStream<Tuple1<String>> control= getControl(env);

DataStream<Product> filteredStream = product.keyBy(0)
.connect(control.keyBy(0))
.flatMap(new CoFlatMapFunImpl());

DataStream<Product> watermarkedStream = filteredStream.assignTimestampsAndWatermarks(
getTimestampAssigner(Time.seconds(1))).setParallelism(3);

watermarkedStream.transform("WatermarkDebugger", watermarkedStream.getType(), new WatermarkDebugger<Product>());

watermarkedStream
.keyBy(0)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.fold(new NameCount("", 0), new FoldFunImpl(), new WindowFunImpl())
.print();

env.execute();
}

/**
* If instead of reading from Kafka, create stream from elements, the
* code works and window function is fired!
*/
private static DataStream<Product> getInput(StreamExecutionEnvironment env) {
return env.fromCollection(Arrays.asList(
new Product("p1",10.0f,"2017-03-14 16:01:01"),
new Product("p1",10.0f,"2017-03-14 16:01:02"),
new Product("p1",10.0f,"2017-03-14 16:01:03"),
new Product("p1",10.0f,"2017-03-14 16:01:04"),
new Product("p1",10.0f,"2017-03-14 16:01:05"),
new Product("p1",10.0f,"2017-03-14 16:01:10"),
new Product("p1",10.0f,"2017-03-14 16:01:11"),
new Product("p1",10.0f,"2017-03-14 16:01:12"),
new Product("p1",10.0f,"2017-03-14 16:01:40"),
new Product("p1",10.0f,"2017-03-14 16:01:50")
));
}

private static DataStream<Product> getKafkaInput(StreamExecutionEnvironment env) throws IOException {
DataStream<String> s = readKafkaStream("test", env);

return s.map(new MapFunction<String, Product>() {
@Override
public Product map(String s) throws Exception {
String[] fields = s.split(",");
return new Product(fields[0], Float.parseFloat(fields[1]), fields[2]);
}
});
}

private static DataStream<Tuple1<String>> getControl(StreamExecutionEnvironment env) {
return env.fromElements(new Tuple1<>("p1"));
}

private static class CoFlatMapFunImpl extends RichCoFlatMapFunction<Product, Tuple1<String>,Product> {

private Set<String> productNames = new HashSet<>(Arrays.asList("p1"));

@Override
public void flatMap1(Product product, Collector<Product> collector) throws Exception {
if (productNames.contains(product.f0)) {
collector.collect(product);
System.out.println("Retaining product " + product + " in data stream");
}
}

@Override
public void flatMap2(Tuple1<String> t, Collector<Product> collector) throws Exception {
productNames.add(t.f0);
System.out.println("Adding product to set:" + t.f0);
}
}

private static class FoldFunImpl implements FoldFunction<Product,NameCount> {
@Override
public NameCount fold(NameCount current, Product p) throws Exception {
current.f0 = p.f0;
current.f1 += 1;
return current;
}
}

/**
* WINDOW FUNCTION NEVER GETS CALLED.
*/
private static class WindowFunImpl extends RichWindowFunction<NameCount,NameCount,Tuple,TimeWindow> {
@Override
public void apply(Tuple key, TimeWindow timeWindow, Iterable<NameCount> iterable,
Collector<NameCount> collector) throws Exception {
NameCount nc = iterable.iterator().next();
collector.collect(nc);
System.out.println("WINDOW: start time: " + new Date(timeWindow.getStart()) + " " + nc);
}
}

private static BoundedOutOfOrdernessTimestampExtractor<Product> getTimestampAssigner(final Time maxOutOfOrderness) {
final DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

return new BoundedOutOfOrdernessTimestampExtractor<Product>(maxOutOfOrderness) {
@Override
public long extractTimestamp(Product p) {
long ts = 0L;
try {
ts = dateFormat.parse(p.f2).getTime();
} catch (Exception e) {}
return ts;
}
};
}

public static class Product extends Tuple3<String,Float,String> {
public Product() {}
public Product(String name, Float price, String dateTime) {
super(name, price, dateTime);
}
}

public static class NameCount extends Tuple2<String,Integer> {
public NameCount() {}
public NameCount(String name, Integer count) {
super(name, count);
}
}

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

public static class WatermarkDebugger<T>
extends AbstractStreamOperator<T> implements OneInputStreamOperator<T, T> {
private static final long serialVersionUID = 1L;

@Override
public void processElement(StreamRecord<T> element) throws Exception {
System.out.println("ELEMENT: " + element);
output.collect(element);
}

@Override
public void processWatermark(Watermark mark) throws Exception {
super.processWatermark(mark);
System.out.println("WM: " + mark);
}
}
}


Reply | Threaded
Open this post in threaded view
|

Re: Data+control stream from kafka + window function - not working

Tarandeep Singh
Data is read from Kafka and yes I use different group id every time I run the code. I have put break points and print statements to verify that.

Also, if I don't connect with control stream the window function works. 

- Tarandeep

On Mar 16, 2017, at 1:12 AM, Tzu-Li (Gordon) Tai <[hidden email]> wrote:

Hi Tarandeep,

I haven’t looked at the rest of the code yet, but my first guess is that you might not be reading any data from Kafka at all:

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

Have you tried using a different “group.id” everytime you’re re-running the job?
Note that the “auto.offset.reset” value is only respected when there aren’t any offsets for the group committed in Kafka.
So you might not actually be reading the complete “small_input.cv” dataset, unless you use a different group.id overtime.

Cheers,
Gordon

On March 16, 2017 at 2:39:10 PM, Tarandeep Singh ([hidden email]) wrote:

Hi,

I am using flink-1.2 and reading data stream from Kafka (using FlinkKafkaConsumer08). I want to connect this data stream with another stream (read control stream) so as to do some filtering on the fly. After filtering, I am applying window function (tumbling/sliding event window) along with fold function. However, the window function does not get called.

Any help to debug/fix this is greatly appreciated!

Below is a reproducible code that one can run in IDE like IntelliJ or on flink cluster. You will need to have a running Kafka cluster (local or otherwise).
Create a topic and add test data points-

$KAFKA_HOME/bin/kafka-topics.sh --create --topic test --zookeeper localhost:2181 --replication-factor 1 --partitions 1
$KAFKA_HOME/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test < small_input.csv

where small_input.csv contains the following lines-

p1,10.0f,2017-03-14 16:01:01
p1,10.0f,2017-03-14 16:01:02
p1,10.0f,2017-03-14 16:01:03
p1,10.0f,2017-03-14 16:01:04
p1,10.0f,2017-03-14 16:01:05
p1,10.0f,2017-03-14 16:01:10
p1,10.0f,2017-03-14 16:01:11
p1,10.0f,2017-03-14 16:01:12
p1,10.0f,2017-03-14 16:01:40
p1,10.0f,2017-03-14 16:01:50

Now you can run the code given below. Note:

1) In this example, I am not reading control stream from Kafka (but issue can be reproduced with this code as well)
2) If instead of reading data stream from kafka, I create stream from elements (i.e. use getInput function instead of getKafkaInput function), the code works and window function is fired.

Thanks,
Tarandeep



import org.apache.flink.api.common.functions.FoldFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.RichCoFlatMapFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.RichWindowFunction;
import org.apache.flink.streaming.api.operators.AbstractStreamOperator;
import org.apache.flink.streaming.api.operators.OneInputStreamOperator;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer08;
import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.util.Collector;

import java.io.IOException;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.*;

public class Test3 {

public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

//DataStream<Product> product = getInput(env);
DataStream<Product> product = getKafkaInput(env);
DataStream<Tuple1<String>> control= getControl(env);

DataStream<Product> filteredStream = product.keyBy(0)
.connect(control.keyBy(0))
.flatMap(new CoFlatMapFunImpl());

DataStream<Product> watermarkedStream = filteredStream.assignTimestampsAndWatermarks(
getTimestampAssigner(Time.seconds(1))).setParallelism(3);

watermarkedStream.transform("WatermarkDebugger", watermarkedStream.getType(), new WatermarkDebugger<Product>());

watermarkedStream
.keyBy(0)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.fold(new NameCount("", 0), new FoldFunImpl(), new WindowFunImpl())
.print();

env.execute();
}

/**
* If instead of reading from Kafka, create stream from elements, the
* code works and window function is fired!
*/
private static DataStream<Product> getInput(StreamExecutionEnvironment env) {
return env.fromCollection(Arrays.asList(
new Product("p1",10.0f,"2017-03-14 16:01:01"),
new Product("p1",10.0f,"2017-03-14 16:01:02"),
new Product("p1",10.0f,"2017-03-14 16:01:03"),
new Product("p1",10.0f,"2017-03-14 16:01:04"),
new Product("p1",10.0f,"2017-03-14 16:01:05"),
new Product("p1",10.0f,"2017-03-14 16:01:10"),
new Product("p1",10.0f,"2017-03-14 16:01:11"),
new Product("p1",10.0f,"2017-03-14 16:01:12"),
new Product("p1",10.0f,"2017-03-14 16:01:40"),
new Product("p1",10.0f,"2017-03-14 16:01:50")
));
}

private static DataStream<Product> getKafkaInput(StreamExecutionEnvironment env) throws IOException {
DataStream<String> s = readKafkaStream("test", env);

return s.map(new MapFunction<String, Product>() {
@Override
public Product map(String s) throws Exception {
String[] fields = s.split(",");
return new Product(fields[0], Float.parseFloat(fields[1]), fields[2]);
}
});
}

private static DataStream<Tuple1<String>> getControl(StreamExecutionEnvironment env) {
return env.fromElements(new Tuple1<>("p1"));
}

private static class CoFlatMapFunImpl extends RichCoFlatMapFunction<Product, Tuple1<String>,Product> {

private Set<String> productNames = new HashSet<>(Arrays.asList("p1"));

@Override
public void flatMap1(Product product, Collector<Product> collector) throws Exception {
if (productNames.contains(product.f0)) {
collector.collect(product);
System.out.println("Retaining product " + product + " in data stream");
}
}

@Override
public void flatMap2(Tuple1<String> t, Collector<Product> collector) throws Exception {
productNames.add(t.f0);
System.out.println("Adding product to set:" + t.f0);
}
}

private static class FoldFunImpl implements FoldFunction<Product,NameCount> {
@Override
public NameCount fold(NameCount current, Product p) throws Exception {
current.f0 = p.f0;
current.f1 += 1;
return current;
}
}

/**
* WINDOW FUNCTION NEVER GETS CALLED.
*/
private static class WindowFunImpl extends RichWindowFunction<NameCount,NameCount,Tuple,TimeWindow> {
@Override
public void apply(Tuple key, TimeWindow timeWindow, Iterable<NameCount> iterable,
Collector<NameCount> collector) throws Exception {
NameCount nc = iterable.iterator().next();
collector.collect(nc);
System.out.println("WINDOW: start time: " + new Date(timeWindow.getStart()) + " " + nc);
}
}

private static BoundedOutOfOrdernessTimestampExtractor<Product> getTimestampAssigner(final Time maxOutOfOrderness) {
final DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

return new BoundedOutOfOrdernessTimestampExtractor<Product>(maxOutOfOrderness) {
@Override
public long extractTimestamp(Product p) {
long ts = 0L;
try {
ts = dateFormat.parse(p.f2).getTime();
} catch (Exception e) {}
return ts;
}
};
}

public static class Product extends Tuple3<String,Float,String> {
public Product() {}
public Product(String name, Float price, String dateTime) {
super(name, price, dateTime);
}
}

public static class NameCount extends Tuple2<String,Integer> {
public NameCount() {}
public NameCount(String name, Integer count) {
super(name, count);
}
}

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

public static class WatermarkDebugger<T>
extends AbstractStreamOperator<T> implements OneInputStreamOperator<T, T> {
private static final long serialVersionUID = 1L;

@Override
public void processElement(StreamRecord<T> element) throws Exception {
System.out.println("ELEMENT: " + element);
output.collect(element);
}

@Override
public void processWatermark(Watermark mark) throws Exception {
super.processWatermark(mark);
System.out.println("WM: " + mark);
}
}
}


Reply | Threaded
Open this post in threaded view
|

Re: Data+control stream from kafka + window function - not working

Tarandeep Singh
Anyone?
Any suggestions what could be going wrong or what I am doing wrong?

Thanks,
Tarandeep


On Thu, Mar 16, 2017 at 7:34 AM, Tarandeep Singh <[hidden email]> wrote:
Data is read from Kafka and yes I use different group id every time I run the code. I have put break points and print statements to verify that.

Also, if I don't connect with control stream the window function works. 

- Tarandeep

On Mar 16, 2017, at 1:12 AM, Tzu-Li (Gordon) Tai <[hidden email]> wrote:

Hi Tarandeep,

I haven’t looked at the rest of the code yet, but my first guess is that you might not be reading any data from Kafka at all:

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

Have you tried using a different “group.id” everytime you’re re-running the job?
Note that the “auto.offset.reset” value is only respected when there aren’t any offsets for the group committed in Kafka.
So you might not actually be reading the complete “small_input.cv” dataset, unless you use a different group.id overtime.

Cheers,
Gordon

On March 16, 2017 at 2:39:10 PM, Tarandeep Singh ([hidden email]) wrote:

Hi,

I am using flink-1.2 and reading data stream from Kafka (using FlinkKafkaConsumer08). I want to connect this data stream with another stream (read control stream) so as to do some filtering on the fly. After filtering, I am applying window function (tumbling/sliding event window) along with fold function. However, the window function does not get called.

Any help to debug/fix this is greatly appreciated!

Below is a reproducible code that one can run in IDE like IntelliJ or on flink cluster. You will need to have a running Kafka cluster (local or otherwise).
Create a topic and add test data points-

$KAFKA_HOME/bin/kafka-topics.sh --create --topic test --zookeeper localhost:2181 --replication-factor 1 --partitions 1
$KAFKA_HOME/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test < small_input.csv

where small_input.csv contains the following lines-

p1,10.0f,2017-03-14 16:01:01
p1,10.0f,2017-03-14 16:01:02
p1,10.0f,2017-03-14 16:01:03
p1,10.0f,2017-03-14 16:01:04
p1,10.0f,2017-03-14 16:01:05
p1,10.0f,2017-03-14 16:01:10
p1,10.0f,2017-03-14 16:01:11
p1,10.0f,2017-03-14 16:01:12
p1,10.0f,2017-03-14 16:01:40
p1,10.0f,2017-03-14 16:01:50

Now you can run the code given below. Note:

1) In this example, I am not reading control stream from Kafka (but issue can be reproduced with this code as well)
2) If instead of reading data stream from kafka, I create stream from elements (i.e. use getInput function instead of getKafkaInput function), the code works and window function is fired.

Thanks,
Tarandeep



import org.apache.flink.api.common.functions.FoldFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.RichCoFlatMapFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.RichWindowFunction;
import org.apache.flink.streaming.api.operators.AbstractStreamOperator;
import org.apache.flink.streaming.api.operators.OneInputStreamOperator;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer08;
import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.util.Collector;

import java.io.IOException;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.*;

public class Test3 {

public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

//DataStream<Product> product = getInput(env);
DataStream<Product> product = getKafkaInput(env);
DataStream<Tuple1<String>> control= getControl(env);

DataStream<Product> filteredStream = product.keyBy(0)
.connect(control.keyBy(0))
.flatMap(new CoFlatMapFunImpl());

DataStream<Product> watermarkedStream = filteredStream.assignTimestampsAndWatermarks(
getTimestampAssigner(Time.seconds(1))).setParallelism(3);

watermarkedStream.transform("WatermarkDebugger", watermarkedStream.getType(), new WatermarkDebugger<Product>());

watermarkedStream
.keyBy(0)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.fold(new NameCount("", 0), new FoldFunImpl(), new WindowFunImpl())
.print();

env.execute();
}

/**
* If instead of reading from Kafka, create stream from elements, the
* code works and window function is fired!
*/
private static DataStream<Product> getInput(StreamExecutionEnvironment env) {
return env.fromCollection(Arrays.asList(
new Product("p1",10.0f,"2017-03-14 16:01:01"),
new Product("p1",10.0f,"2017-03-14 16:01:02"),
new Product("p1",10.0f,"2017-03-14 16:01:03"),
new Product("p1",10.0f,"2017-03-14 16:01:04"),
new Product("p1",10.0f,"2017-03-14 16:01:05"),
new Product("p1",10.0f,"2017-03-14 16:01:10"),
new Product("p1",10.0f,"2017-03-14 16:01:11"),
new Product("p1",10.0f,"2017-03-14 16:01:12"),
new Product("p1",10.0f,"2017-03-14 16:01:40"),
new Product("p1",10.0f,"2017-03-14 16:01:50")
));
}

private static DataStream<Product> getKafkaInput(StreamExecutionEnvironment env) throws IOException {
DataStream<String> s = readKafkaStream("test", env);

return s.map(new MapFunction<String, Product>() {
@Override
public Product map(String s) throws Exception {
String[] fields = s.split(",");
return new Product(fields[0], Float.parseFloat(fields[1]), fields[2]);
}
});
}

private static DataStream<Tuple1<String>> getControl(StreamExecutionEnvironment env) {
return env.fromElements(new Tuple1<>("p1"));
}

private static class CoFlatMapFunImpl extends RichCoFlatMapFunction<Product, Tuple1<String>,Product> {

private Set<String> productNames = new HashSet<>(Arrays.asList("p1"));

@Override
public void flatMap1(Product product, Collector<Product> collector) throws Exception {
if (productNames.contains(product.f0)) {
collector.collect(product);
System.out.println("Retaining product " + product + " in data stream");
}
}

@Override
public void flatMap2(Tuple1<String> t, Collector<Product> collector) throws Exception {
productNames.add(t.f0);
System.out.println("Adding product to set:" + t.f0);
}
}

private static class FoldFunImpl implements FoldFunction<Product,NameCount> {
@Override
public NameCount fold(NameCount current, Product p) throws Exception {
current.f0 = p.f0;
current.f1 += 1;
return current;
}
}

/**
* WINDOW FUNCTION NEVER GETS CALLED.
*/
private static class WindowFunImpl extends RichWindowFunction<NameCount,NameCount,Tuple,TimeWindow> {
@Override
public void apply(Tuple key, TimeWindow timeWindow, Iterable<NameCount> iterable,
Collector<NameCount> collector) throws Exception {
NameCount nc = iterable.iterator().next();
collector.collect(nc);
System.out.println("WINDOW: start time: " + new Date(timeWindow.getStart()) + " " + nc);
}
}

private static BoundedOutOfOrdernessTimestampExtractor<Product> getTimestampAssigner(final Time maxOutOfOrderness) {
final DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

return new BoundedOutOfOrdernessTimestampExtractor<Product>(maxOutOfOrderness) {
@Override
public long extractTimestamp(Product p) {
long ts = 0L;
try {
ts = dateFormat.parse(p.f2).getTime();
} catch (Exception e) {}
return ts;
}
};
}

public static class Product extends Tuple3<String,Float,String> {
public Product() {}
public Product(String name, Float price, String dateTime) {
super(name, price, dateTime);
}
}

public static class NameCount extends Tuple2<String,Integer> {
public NameCount() {}
public NameCount(String name, Integer count) {
super(name, count);
}
}

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

public static class WatermarkDebugger<T>
extends AbstractStreamOperator<T> implements OneInputStreamOperator<T, T> {
private static final long serialVersionUID = 1L;

@Override
public void processElement(StreamRecord<T> element) throws Exception {
System.out.println("ELEMENT: " + element);
output.collect(element);
}

@Override
public void processWatermark(Watermark mark) throws Exception {
super.processWatermark(mark);
System.out.println("WM: " + mark);
}
}
}



Reply | Threaded
Open this post in threaded view
|

Re: Data+control stream from kafka + window function - not working

Tzu-Li (Gordon) Tai
Hi Tarandeep,

Thanks for clarifying.

For the next step, I would recommend taking a look at https://ci.apache.org/projects/flink/flink-docs-release-1.3/monitoring/debugging_event_time.html and try to find out what exactly is wrong with the watermark progression. Flink 1.2 exposes watermarks as a metric, and that should help in figuring out why the windows aren’t firing.

Also, I see you have added a “WatermarkDebugger” in your job. Have you checked whether or not the watermarks printed there are identical (using getInput v.s. getKafkaInput)?

Cheers,
Gordon

On March 17, 2017 at 12:32:51 PM, Tarandeep Singh ([hidden email]) wrote:

Anyone?
Any suggestions what could be going wrong or what I am doing wrong?

Thanks,
Tarandeep


On Thu, Mar 16, 2017 at 7:34 AM, Tarandeep Singh <[hidden email]> wrote:
Data is read from Kafka and yes I use different group id every time I run the code. I have put break points and print statements to verify that.

Also, if I don't connect with control stream the window function works. 

- Tarandeep

On Mar 16, 2017, at 1:12 AM, Tzu-Li (Gordon) Tai <[hidden email]> wrote:

Hi Tarandeep,

I haven’t looked at the rest of the code yet, but my first guess is that you might not be reading any data from Kafka at all:

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

Have you tried using a different “group.id” everytime you’re re-running the job?
Note that the “auto.offset.reset” value is only respected when there aren’t any offsets for the group committed in Kafka.
So you might not actually be reading the complete “small_input.cv” dataset, unless you use a different group.id overtime.

Cheers,
Gordon

On March 16, 2017 at 2:39:10 PM, Tarandeep Singh ([hidden email]) wrote:

Hi,

I am using flink-1.2 and reading data stream from Kafka (using FlinkKafkaConsumer08). I want to connect this data stream with another stream (read control stream) so as to do some filtering on the fly. After filtering, I am applying window function (tumbling/sliding event window) along with fold function. However, the window function does not get called.

Any help to debug/fix this is greatly appreciated!

Below is a reproducible code that one can run in IDE like IntelliJ or on flink cluster. You will need to have a running Kafka cluster (local or otherwise).
Create a topic and add test data points-

$KAFKA_HOME/bin/kafka-topics.sh --create --topic test --zookeeper localhost:2181 --replication-factor 1 --partitions 1
$KAFKA_HOME/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test < small_input.csv

where small_input.csv contains the following lines-

p1,10.0f,2017-03-14 16:01:01
p1,10.0f,2017-03-14 16:01:02
p1,10.0f,2017-03-14 16:01:03
p1,10.0f,2017-03-14 16:01:04
p1,10.0f,2017-03-14 16:01:05
p1,10.0f,2017-03-14 16:01:10
p1,10.0f,2017-03-14 16:01:11
p1,10.0f,2017-03-14 16:01:12
p1,10.0f,2017-03-14 16:01:40
p1,10.0f,2017-03-14 16:01:50

Now you can run the code given below. Note:

1) In this example, I am not reading control stream from Kafka (but issue can be reproduced with this code as well)
2) If instead of reading data stream from kafka, I create stream from elements (i.e. use getInput function instead of getKafkaInput function), the code works and window function is fired.

Thanks,
Tarandeep



import org.apache.flink.api.common.functions.FoldFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.RichCoFlatMapFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.RichWindowFunction;
import org.apache.flink.streaming.api.operators.AbstractStreamOperator;
import org.apache.flink.streaming.api.operators.OneInputStreamOperator;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer08;
import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.util.Collector;

import java.io.IOException;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.*;

public class Test3 {

public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

//DataStream<Product> product = getInput(env);
DataStream<Product> product = getKafkaInput(env);
DataStream<Tuple1<String>> control= getControl(env);

DataStream<Product> filteredStream = product.keyBy(0)
.connect(control.keyBy(0))
.flatMap(new CoFlatMapFunImpl());

DataStream<Product> watermarkedStream = filteredStream.assignTimestampsAndWatermarks(
getTimestampAssigner(Time.seconds(1))).setParallelism(3);

watermarkedStream.transform("WatermarkDebugger", watermarkedStream.getType(), new WatermarkDebugger<Product>());

watermarkedStream
.keyBy(0)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.fold(new NameCount("", 0), new FoldFunImpl(), new WindowFunImpl())
.print();

env.execute();
}

/**
* If instead of reading from Kafka, create stream from elements, the
* code works and window function is fired!
*/
private static DataStream<Product> getInput(StreamExecutionEnvironment env) {
return env.fromCollection(Arrays.asList(
new Product("p1",10.0f,"2017-03-14 16:01:01"),
new Product("p1",10.0f,"2017-03-14 16:01:02"),
new Product("p1",10.0f,"2017-03-14 16:01:03"),
new Product("p1",10.0f,"2017-03-14 16:01:04"),
new Product("p1",10.0f,"2017-03-14 16:01:05"),
new Product("p1",10.0f,"2017-03-14 16:01:10"),
new Product("p1",10.0f,"2017-03-14 16:01:11"),
new Product("p1",10.0f,"2017-03-14 16:01:12"),
new Product("p1",10.0f,"2017-03-14 16:01:40"),
new Product("p1",10.0f,"2017-03-14 16:01:50")
));
}

private static DataStream<Product> getKafkaInput(StreamExecutionEnvironment env) throws IOException {
DataStream<String> s = readKafkaStream("test", env);

return s.map(new MapFunction<String, Product>() {
@Override
public Product map(String s) throws Exception {
String[] fields = s.split(",");
return new Product(fields[0], Float.parseFloat(fields[1]), fields[2]);
}
});
}

private static DataStream<Tuple1<String>> getControl(StreamExecutionEnvironment env) {
return env.fromElements(new Tuple1<>("p1"));
}

private static class CoFlatMapFunImpl extends RichCoFlatMapFunction<Product, Tuple1<String>,Product> {

private Set<String> productNames = new HashSet<>(Arrays.asList("p1"));

@Override
public void flatMap1(Product product, Collector<Product> collector) throws Exception {
if (productNames.contains(product.f0)) {
collector.collect(product);
System.out.println("Retaining product " + product + " in data stream");
}
}

@Override
public void flatMap2(Tuple1<String> t, Collector<Product> collector) throws Exception {
productNames.add(t.f0);
System.out.println("Adding product to set:" + t.f0);
}
}

private static class FoldFunImpl implements FoldFunction<Product,NameCount> {
@Override
public NameCount fold(NameCount current, Product p) throws Exception {
current.f0 = p.f0;
current.f1 += 1;
return current;
}
}

/**
* WINDOW FUNCTION NEVER GETS CALLED.
*/
private static class WindowFunImpl extends RichWindowFunction<NameCount,NameCount,Tuple,TimeWindow> {
@Override
public void apply(Tuple key, TimeWindow timeWindow, Iterable<NameCount> iterable,
Collector<NameCount> collector) throws Exception {
NameCount nc = iterable.iterator().next();
collector.collect(nc);
System.out.println("WINDOW: start time: " + new Date(timeWindow.getStart()) + " " + nc);
}
}

private static BoundedOutOfOrdernessTimestampExtractor<Product> getTimestampAssigner(final Time maxOutOfOrderness) {
final DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

return new BoundedOutOfOrdernessTimestampExtractor<Product>(maxOutOfOrderness) {
@Override
public long extractTimestamp(Product p) {
long ts = 0L;
try {
ts = dateFormat.parse(p.f2).getTime();
} catch (Exception e) {}
return ts;
}
};
}

public static class Product extends Tuple3<String,Float,String> {
public Product() {}
public Product(String name, Float price, String dateTime) {
super(name, price, dateTime);
}
}

public static class NameCount extends Tuple2<String,Integer> {
public NameCount() {}
public NameCount(String name, Integer count) {
super(name, count);
}
}

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

public static class WatermarkDebugger<T>
extends AbstractStreamOperator<T> implements OneInputStreamOperator<T, T> {
private static final long serialVersionUID = 1L;

@Override
public void processElement(StreamRecord<T> element) throws Exception {
System.out.println("ELEMENT: " + element);
output.collect(element);
}

@Override
public void processWatermark(Watermark mark) throws Exception {
super.processWatermark(mark);
System.out.println("WM: " + mark);
}
}
}



Reply | Threaded
Open this post in threaded view
|

Re: Data+control stream from kafka + window function - not working

Tarandeep Singh
Hi Gordon,

When I use getInput (input created via collection), then watermarks are always Long.MAX_VALUE:
WM: Watermark @ 9223372036854775807

This is understandable as input source has finished so a watermark of value Long.MAX_VALUE is emitted.

When I use getKafkaInput, I get this watermark:
WM: Watermark @ 1489532509000

This corresponds to Tue Mar 14 2017 16:01:49, which seems right (last record's timestamp: 2017-03-14 16:01:50 minus 1 sec due to maxOutOfOrder value).

If I *don't* use control stream, I also get correct watermark and this time window function is called and correct aggregated values are generated.

Thanks,
Tarandeep



On Thu, Mar 16, 2017 at 10:25 PM, Tzu-Li (Gordon) Tai <[hidden email]> wrote:
Hi Tarandeep,

Thanks for clarifying.

For the next step, I would recommend taking a look at https://ci.apache.org/projects/flink/flink-docs-release-1.3/monitoring/debugging_event_time.html and try to find out what exactly is wrong with the watermark progression. Flink 1.2 exposes watermarks as a metric, and that should help in figuring out why the windows aren’t firing.

Also, I see you have added a “WatermarkDebugger” in your job. Have you checked whether or not the watermarks printed there are identical (using getInput v.s. getKafkaInput)?

Cheers,
Gordon


On March 17, 2017 at 12:32:51 PM, Tarandeep Singh ([hidden email]) wrote:

Anyone?
Any suggestions what could be going wrong or what I am doing wrong?

Thanks,
Tarandeep


On Thu, Mar 16, 2017 at 7:34 AM, Tarandeep Singh <[hidden email]> wrote:
Data is read from Kafka and yes I use different group id every time I run the code. I have put break points and print statements to verify that.

Also, if I don't connect with control stream the window function works. 

- Tarandeep

On Mar 16, 2017, at 1:12 AM, Tzu-Li (Gordon) Tai <[hidden email]> wrote:

Hi Tarandeep,

I haven’t looked at the rest of the code yet, but my first guess is that you might not be reading any data from Kafka at all:

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

Have you tried using a different “group.id” everytime you’re re-running the job?
Note that the “auto.offset.reset” value is only respected when there aren’t any offsets for the group committed in Kafka.
So you might not actually be reading the complete “small_input.cv” dataset, unless you use a different group.id overtime.

Cheers,
Gordon

On March 16, 2017 at 2:39:10 PM, Tarandeep Singh ([hidden email]) wrote:

Hi,

I am using flink-1.2 and reading data stream from Kafka (using FlinkKafkaConsumer08). I want to connect this data stream with another stream (read control stream) so as to do some filtering on the fly. After filtering, I am applying window function (tumbling/sliding event window) along with fold function. However, the window function does not get called.

Any help to debug/fix this is greatly appreciated!

Below is a reproducible code that one can run in IDE like IntelliJ or on flink cluster. You will need to have a running Kafka cluster (local or otherwise).
Create a topic and add test data points-

$KAFKA_HOME/bin/kafka-topics.sh --create --topic test --zookeeper localhost:2181 --replication-factor 1 --partitions 1
$KAFKA_HOME/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test < small_input.csv

where small_input.csv contains the following lines-

p1,10.0f,2017-03-14 16:01:01
p1,10.0f,2017-03-14 16:01:02
p1,10.0f,2017-03-14 16:01:03
p1,10.0f,2017-03-14 16:01:04
p1,10.0f,2017-03-14 16:01:05
p1,10.0f,2017-03-14 16:01:10
p1,10.0f,2017-03-14 16:01:11
p1,10.0f,2017-03-14 16:01:12
p1,10.0f,2017-03-14 16:01:40
p1,10.0f,2017-03-14 16:01:50

Now you can run the code given below. Note:

1) In this example, I am not reading control stream from Kafka (but issue can be reproduced with this code as well)
2) If instead of reading data stream from kafka, I create stream from elements (i.e. use getInput function instead of getKafkaInput function), the code works and window function is fired.

Thanks,
Tarandeep



import org.apache.flink.api.common.functions.FoldFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.RichCoFlatMapFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.RichWindowFunction;
import org.apache.flink.streaming.api.operators.AbstractStreamOperator;
import org.apache.flink.streaming.api.operators.OneInputStreamOperator;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer08;
import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.util.Collector;

import java.io.IOException;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.*;

public class Test3 {

public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

//DataStream<Product> product = getInput(env);
DataStream<Product> product = getKafkaInput(env);
DataStream<Tuple1<String>> control= getControl(env);

DataStream<Product> filteredStream = product.keyBy(0)
.connect(control.keyBy(0))
.flatMap(new CoFlatMapFunImpl());

DataStream<Product> watermarkedStream = filteredStream.assignTimestampsAndWatermarks(
getTimestampAssigner(Time.seconds(1))).setParallelism(3);

watermarkedStream.transform("WatermarkDebugger", watermarkedStream.getType(), new WatermarkDebugger<Product>());

watermarkedStream
.keyBy(0)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.fold(new NameCount("", 0), new FoldFunImpl(), new WindowFunImpl())
.print();

env.execute();
}

/**
* If instead of reading from Kafka, create stream from elements, the
* code works and window function is fired!
*/
private static DataStream<Product> getInput(StreamExecutionEnvironment env) {
return env.fromCollection(Arrays.asList(
new Product("p1",10.0f,"2017-03-14 16:01:01"),
new Product("p1",10.0f,"2017-03-14 16:01:02"),
new Product("p1",10.0f,"2017-03-14 16:01:03"),
new Product("p1",10.0f,"2017-03-14 16:01:04"),
new Product("p1",10.0f,"2017-03-14 16:01:05"),
new Product("p1",10.0f,"2017-03-14 16:01:10"),
new Product("p1",10.0f,"2017-03-14 16:01:11"),
new Product("p1",10.0f,"2017-03-14 16:01:12"),
new Product("p1",10.0f,"2017-03-14 16:01:40"),
new Product("p1",10.0f,"2017-03-14 16:01:50")
));
}

private static DataStream<Product> getKafkaInput(StreamExecutionEnvironment env) throws IOException {
DataStream<String> s = readKafkaStream("test", env);

return s.map(new MapFunction<String, Product>() {
@Override
public Product map(String s) throws Exception {
String[] fields = s.split(",");
return new Product(fields[0], Float.parseFloat(fields[1]), fields[2]);
}
});
}

private static DataStream<Tuple1<String>> getControl(StreamExecutionEnvironment env) {
return env.fromElements(new Tuple1<>("p1"));
}

private static class CoFlatMapFunImpl extends RichCoFlatMapFunction<Product, Tuple1<String>,Product> {

private Set<String> productNames = new HashSet<>(Arrays.asList("p1"));

@Override
public void flatMap1(Product product, Collector<Product> collector) throws Exception {
if (productNames.contains(product.f0)) {
collector.collect(product);
System.out.println("Retaining product " + product + " in data stream");
}
}

@Override
public void flatMap2(Tuple1<String> t, Collector<Product> collector) throws Exception {
productNames.add(t.f0);
System.out.println("Adding product to set:" + t.f0);
}
}

private static class FoldFunImpl implements FoldFunction<Product,NameCount> {
@Override
public NameCount fold(NameCount current, Product p) throws Exception {
current.f0 = p.f0;
current.f1 += 1;
return current;
}
}

/**
* WINDOW FUNCTION NEVER GETS CALLED.
*/
private static class WindowFunImpl extends RichWindowFunction<NameCount,NameCount,Tuple,TimeWindow> {
@Override
public void apply(Tuple key, TimeWindow timeWindow, Iterable<NameCount> iterable,
Collector<NameCount> collector) throws Exception {
NameCount nc = iterable.iterator().next();
collector.collect(nc);
System.out.println("WINDOW: start time: " + new Date(timeWindow.getStart()) + " " + nc);
}
}

private static BoundedOutOfOrdernessTimestampExtractor<Product> getTimestampAssigner(final Time maxOutOfOrderness) {
final DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

return new BoundedOutOfOrdernessTimestampExtractor<Product>(maxOutOfOrderness) {
@Override
public long extractTimestamp(Product p) {
long ts = 0L;
try {
ts = dateFormat.parse(p.f2).getTime();
} catch (Exception e) {}
return ts;
}
};
}

public static class Product extends Tuple3<String,Float,String> {
public Product() {}
public Product(String name, Float price, String dateTime) {
super(name, price, dateTime);
}
}

public static class NameCount extends Tuple2<String,Integer> {
public NameCount() {}
public NameCount(String name, Integer count) {
super(name, count);
}
}

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

public static class WatermarkDebugger<T>
extends AbstractStreamOperator<T> implements OneInputStreamOperator<T, T> {
private static final long serialVersionUID = 1L;

@Override
public void processElement(StreamRecord<T> element) throws Exception {
System.out.println("ELEMENT: " + element);
output.collect(element);
}

@Override
public void processWatermark(Watermark mark) throws Exception {
super.processWatermark(mark);
System.out.println("WM: " + mark);
}
}
}




Reply | Threaded
Open this post in threaded view
|

Re: Data+control stream from kafka + window function - not working

Aljoscha Krettek
What do you get form the sys out printing in CoFlatMapFunImpl? Could it be that all the elements are being processed before the control input element arrives and that they are therefore dropped?

On 17 Mar 2017, at 09:14, Tarandeep Singh <[hidden email]> wrote:

Hi Gordon,

When I use getInput (input created via collection), then watermarks are always Long.MAX_VALUE:
WM: Watermark @ 9223372036854775807

This is understandable as input source has finished so a watermark of value Long.MAX_VALUE is emitted.

When I use getKafkaInput, I get this watermark:
WM: Watermark @ 1489532509000

This corresponds to Tue Mar 14 2017 16:01:49, which seems right (last record's timestamp: 2017-03-14 16:01:50 minus 1 sec due to maxOutOfOrder value).

If I *don't* use control stream, I also get correct watermark and this time window function is called and correct aggregated values are generated.

Thanks,
Tarandeep



On Thu, Mar 16, 2017 at 10:25 PM, Tzu-Li (Gordon) Tai <[hidden email]> wrote:
Hi Tarandeep,

Thanks for clarifying.

For the next step, I would recommend taking a look at https://ci.apache.org/projects/flink/flink-docs-release-1.3/monitoring/debugging_event_time.html and try to find out what exactly is wrong with the watermark progression. Flink 1.2 exposes watermarks as a metric, and that should help in figuring out why the windows aren’t firing.

Also, I see you have added a “WatermarkDebugger” in your job. Have you checked whether or not the watermarks printed there are identical (using getInput v.s. getKafkaInput)?

Cheers,
Gordon


On March 17, 2017 at 12:32:51 PM, Tarandeep Singh ([hidden email]) wrote:

Anyone?
Any suggestions what could be going wrong or what I am doing wrong?

Thanks,
Tarandeep


On Thu, Mar 16, 2017 at 7:34 AM, Tarandeep Singh <[hidden email]> wrote:
Data is read from Kafka and yes I use different group id every time I run the code. I have put break points and print statements to verify that.

Also, if I don't connect with control stream the window function works. 

- Tarandeep

On Mar 16, 2017, at 1:12 AM, Tzu-Li (Gordon) Tai <[hidden email]> wrote:

Hi Tarandeep,

I haven’t looked at the rest of the code yet, but my first guess is that you might not be reading any data from Kafka at all:

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

Have you tried using a different “group.id” everytime you’re re-running the job?
Note that the “auto.offset.reset” value is only respected when there aren’t any offsets for the group committed in Kafka.
So you might not actually be reading the complete “small_input.cv” dataset, unless you use a different group.id overtime.

Cheers,
Gordon

On March 16, 2017 at 2:39:10 PM, Tarandeep Singh ([hidden email]) wrote:

Hi,

I am using flink-1.2 and reading data stream from Kafka (using FlinkKafkaConsumer08). I want to connect this data stream with another stream (read control stream) so as to do some filtering on the fly. After filtering, I am applying window function (tumbling/sliding event window) along with fold function. However, the window function does not get called.

Any help to debug/fix this is greatly appreciated!

Below is a reproducible code that one can run in IDE like IntelliJ or on flink cluster. You will need to have a running Kafka cluster (local or otherwise).
Create a topic and add test data points-

$KAFKA_HOME/bin/kafka-topics.sh --create --topic test --zookeeper localhost:2181 --replication-factor 1 --partitions 1
$KAFKA_HOME/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test < small_input.csv

where small_input.csv contains the following lines-

p1,10.0f,2017-03-14 16:01:01
p1,10.0f,2017-03-14 16:01:02
p1,10.0f,2017-03-14 16:01:03
p1,10.0f,2017-03-14 16:01:04
p1,10.0f,2017-03-14 16:01:05
p1,10.0f,2017-03-14 16:01:10
p1,10.0f,2017-03-14 16:01:11
p1,10.0f,2017-03-14 16:01:12
p1,10.0f,2017-03-14 16:01:40
p1,10.0f,2017-03-14 16:01:50

Now you can run the code given below. Note:

1) In this example, I am not reading control stream from Kafka (but issue can be reproduced with this code as well)
2) If instead of reading data stream from kafka, I create stream from elements (i.e. use getInput function instead of getKafkaInput function), the code works and window function is fired.

Thanks,
Tarandeep



import org.apache.flink.api.common.functions.FoldFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.RichCoFlatMapFunction;
import org.apache.flink.streaming.api.functions.timestamps.BoundedOutOfOrdernessTimestampExtractor;
import org.apache.flink.streaming.api.functions.windowing.RichWindowFunction;
import org.apache.flink.streaming.api.operators.AbstractStreamOperator;
import org.apache.flink.streaming.api.operators.OneInputStreamOperator;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer08;
import org.apache.flink.streaming.runtime.streamrecord.StreamRecord;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.util.Collector;

import java.io.IOException;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.*;

public class Test3 {

public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

//DataStream<Product> product = getInput(env);
DataStream<Product> product = getKafkaInput(env);
DataStream<Tuple1<String>> control= getControl(env);

DataStream<Product> filteredStream = product.keyBy(0)
.connect(control.keyBy(0))
.flatMap(new CoFlatMapFunImpl());

DataStream<Product> watermarkedStream = filteredStream.assignTimestampsAndWatermarks(
getTimestampAssigner(Time.seconds(1))).setParallelism(3);

watermarkedStream.transform("WatermarkDebugger", watermarkedStream.getType(), new WatermarkDebugger<Product>());

watermarkedStream
.keyBy(0)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.fold(new NameCount("", 0), new FoldFunImpl(), new WindowFunImpl())
.print();

env.execute();
}

/**
* If instead of reading from Kafka, create stream from elements, the
* code works and window function is fired!
*/
private static DataStream<Product> getInput(StreamExecutionEnvironment env) {
return env.fromCollection(Arrays.asList(
new Product("p1",10.0f,"2017-03-14 16:01:01"),
new Product("p1",10.0f,"2017-03-14 16:01:02"),
new Product("p1",10.0f,"2017-03-14 16:01:03"),
new Product("p1",10.0f,"2017-03-14 16:01:04"),
new Product("p1",10.0f,"2017-03-14 16:01:05"),
new Product("p1",10.0f,"2017-03-14 16:01:10"),
new Product("p1",10.0f,"2017-03-14 16:01:11"),
new Product("p1",10.0f,"2017-03-14 16:01:12"),
new Product("p1",10.0f,"2017-03-14 16:01:40"),
new Product("p1",10.0f,"2017-03-14 16:01:50")
));
}

private static DataStream<Product> getKafkaInput(StreamExecutionEnvironment env) throws IOException {
DataStream<String> s = readKafkaStream("test", env);

return s.map(new MapFunction<String, Product>() {
@Override
public Product map(String s) throws Exception {
String[] fields = s.split(",");
return new Product(fields[0], Float.parseFloat(fields[1]), fields[2]);
}
});
}

private static DataStream<Tuple1<String>> getControl(StreamExecutionEnvironment env) {
return env.fromElements(new Tuple1<>("p1"));
}

private static class CoFlatMapFunImpl extends RichCoFlatMapFunction<Product, Tuple1<String>,Product> {

private Set<String> productNames = new HashSet<>(Arrays.asList("p1"));

@Override
public void flatMap1(Product product, Collector<Product> collector) throws Exception {
if (productNames.contains(product.f0)) {
collector.collect(product);
System.out.println("Retaining product " + product + " in data stream");
}
}

@Override
public void flatMap2(Tuple1<String> t, Collector<Product> collector) throws Exception {
productNames.add(t.f0);
System.out.println("Adding product to set:" + t.f0);
}
}

private static class FoldFunImpl implements FoldFunction<Product,NameCount> {
@Override
public NameCount fold(NameCount current, Product p) throws Exception {
current.f0 = p.f0;
current.f1 += 1;
return current;
}
}

/**
* WINDOW FUNCTION NEVER GETS CALLED.
*/
private static class WindowFunImpl extends RichWindowFunction<NameCount,NameCount,Tuple,TimeWindow> {
@Override
public void apply(Tuple key, TimeWindow timeWindow, Iterable<NameCount> iterable,
Collector<NameCount> collector) throws Exception {
NameCount nc = iterable.iterator().next();
collector.collect(nc);
System.out.println("WINDOW: start time: " + new Date(timeWindow.getStart()) + " " + nc);
}
}

private static BoundedOutOfOrdernessTimestampExtractor<Product> getTimestampAssigner(final Time maxOutOfOrderness) {
final DateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

return new BoundedOutOfOrdernessTimestampExtractor<Product>(maxOutOfOrderness) {
@Override
public long extractTimestamp(Product p) {
long ts = 0L;
try {
ts = dateFormat.parse(p.f2).getTime();
} catch (Exception e) {}
return ts;
}
};
}

public static class Product extends Tuple3<String,Float,String> {
public Product() {}
public Product(String name, Float price, String dateTime) {
super(name, price, dateTime);
}
}

public static class NameCount extends Tuple2<String,Integer> {
public NameCount() {}
public NameCount(String name, Integer count) {
super(name, count);
}
}

private static DataStream<String> readKafkaStream(String topic, StreamExecutionEnvironment env) throws IOException {

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "group-0009");
properties.setProperty("auto.offset.reset", "smallest");
return env.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), properties));
}

public static class WatermarkDebugger<T>
extends AbstractStreamOperator<T> implements OneInputStreamOperator<T, T> {
private static final long serialVersionUID = 1L;

@Override
public void processElement(StreamRecord<T> element) throws Exception {
System.out.println("ELEMENT: " + element);
output.collect(element);
}

@Override
public void processWatermark(Watermark mark) throws Exception {
super.processWatermark(mark);
System.out.println("WM: " + mark);
}
}
}