Convert flink table with field of type RAW to datastream

classic Classic list List threaded Threaded
4 messages Options
Reply | Threaded
Open this post in threaded view
|

Convert flink table with field of type RAW to datastream

uuuuuu
Hi all,

I am using flink to process external data. The source format is json, and the underlying data types are defined in a external library.
I generated table schema with `TableSchema.fromTypeInfo` and `TypeInformation.of[_]`. From what I read, this method is deprecated.
But I didn't find any alternatives. Manually tweaking table schema is not viable as there are simply too many types.

One of the field in the source type is `java.util.Date`. I tried to convert the obtained table to a datastream with Table.toAppendStream.
When I ran `tEnv.from("rawEvent").select('_isComplete).toAppendStream[(Boolean)].print()`, the following exception occurred.

Exception in thread "main" org.apache.flink.table.api.TableException: Type is not supported: Date
at org.apache.flink.table.calcite.FlinkTypeFactory$.org$apache$flink$table$calcite$FlinkTypeFactory$$typeInfoToSqlTypeName(FlinkTypeFactory.scala:350)
at org.apache.flink.table.calcite.FlinkTypeFactory.createTypeFromTypeInfo(FlinkTypeFactory.scala:63)
at org.apache.flink.table.calcite.FlinkTypeFactory.$anonfun$buildLogicalRowType$1(FlinkTypeFactory.scala:201)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.flink.table.calcite.FlinkTypeFactory.buildLogicalRowType(FlinkTypeFactory.scala:198)
at org.apache.flink.table.plan.schema.TableSourceTable.getRowType(TableSourceTable.scala:96)
at org.apache.calcite.prepare.CalciteCatalogReader.getTable(CalciteCatalogReader.java:131)
at org.apache.calcite.prepare.CalciteCatalogReader.getTableForMember(CalciteCatalogReader.java:228)
at org.apache.calcite.prepare.CalciteCatalogReader.getTableForMember(CalciteCatalogReader.java:84)
at org.apache.calcite.tools.RelBuilder.scan(RelBuilder.java:1068)
at org.apache.calcite.tools.RelBuilder.scan(RelBuilder.java:1094)
at org.apache.flink.table.plan.QueryOperationConverter$SingleRelVisitor.visit(QueryOperationConverter.java:268)
at org.apache.flink.table.plan.QueryOperationConverter$SingleRelVisitor.visit(QueryOperationConverter.java:134)
at org.apache.flink.table.operations.CatalogQueryOperation.accept(CatalogQueryOperation.java:69)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:131)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:111)
at org.apache.flink.table.operations.utils.QueryOperationDefaultVisitor.visit(QueryOperationDefaultVisitor.java:91)
at org.apache.flink.table.operations.CatalogQueryOperation.accept(CatalogQueryOperation.java:69)
at org.apache.flink.table.plan.QueryOperationConverter.lambda$defaultMethod$0(QueryOperationConverter.java:130)
at java.util.Collections$SingletonList.forEach(Collections.java:4824)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:130)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:111)
at org.apache.flink.table.operations.utils.QueryOperationDefaultVisitor.visit(QueryOperationDefaultVisitor.java:46)
at org.apache.flink.table.operations.ProjectQueryOperation.accept(ProjectQueryOperation.java:75)
at org.apache.flink.table.calcite.FlinkRelBuilder.tableOperation(FlinkRelBuilder.scala:106)
at org.apache.flink.table.planner.StreamPlanner.translateToType(StreamPlanner.scala:390)
at org.apache.flink.table.planner.StreamPlanner.translate(StreamPlanner.scala:185)
at org.apache.flink.table.planner.StreamPlanner.$anonfun$translate$1(StreamPlanner.scala:117)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:273)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at scala.collection.TraversableLike.map(TraversableLike.scala:273)
at scala.collection.TraversableLike.map$(TraversableLike.scala:266)
at scala.collection.AbstractTraversable.map(Traversable.scala:108)
at org.apache.flink.table.planner.StreamPlanner.translate(StreamPlanner.scala:117)
at org.apache.flink.table.api.scala.internal.StreamTableEnvironmentImpl.toDataStream(StreamTableEnvironmentImpl.scala:210)
at org.apache.flink.table.api.scala.internal.StreamTableEnvironmentImpl.toAppendStream(StreamTableEnvironmentImpl.scala:107)
at org.apache.flink.table.api.scala.TableConversions.toAppendStream(TableConversions.scala:101)
at io.redacted.test.package$.testJoin(package.scala:31)
at io.redacted.test.package$.process(package.scala:26)
at io.redacted.DataAggregator$.main(DataAggregator.scala:15)
at io.redacted.DataAggregator.main(DataAggregator.scala)


This exception is thrown even though I didn't select RAW data field `_startTime` which is of type `java.util.Date`. I believe this exception is undesirable.
Is there any way to obtain a RAW data from flink tables? If there isn't any, how do I circumvent my current issue? Do I need to manually update all table schema?

Unfortunately, I didn't find a satisfatory solutions.

Cheers,
Yi

Reply | Threaded
Open this post in threaded view
|

Re: Convert flink table with field of type RAW to datastream

Jark Wu-3
Hi YI,

Flink doesn't have a TypeInformation for `java.util.Date`, but only SqlTimeTypeInfo.DATE for `java.sql.Date`. 
That's why the TypeInformation.of(java.util.Date) is being recognized as a RAW type. 

To resolve your problem, I think in `TypeInformation.of(..)` you should use a concrete type for `java.util.Date`, e.g. `java.sql.Timestamp`, `java.sql.Date`, `java.sql.Time`. 

Best,
Jark

On Thu, 18 Jun 2020 at 10:32, YI <[hidden email]> wrote:
Hi all,

I am using flink to process external data. The source format is json, and the underlying data types are defined in a external library.
I generated table schema with `TableSchema.fromTypeInfo` and `TypeInformation.of[_]`. From what I read, this method is deprecated.
But I didn't find any alternatives. Manually tweaking table schema is not viable as there are simply too many types.

One of the field in the source type is `java.util.Date`. I tried to convert the obtained table to a datastream with Table.toAppendStream.
When I ran `tEnv.from("rawEvent").select('_isComplete).toAppendStream[(Boolean)].print()`, the following exception occurred.

Exception in thread "main" org.apache.flink.table.api.TableException: Type is not supported: Date
at org.apache.flink.table.calcite.FlinkTypeFactory$.org$apache$flink$table$calcite$FlinkTypeFactory$$typeInfoToSqlTypeName(FlinkTypeFactory.scala:350)
at org.apache.flink.table.calcite.FlinkTypeFactory.createTypeFromTypeInfo(FlinkTypeFactory.scala:63)
at org.apache.flink.table.calcite.FlinkTypeFactory.$anonfun$buildLogicalRowType$1(FlinkTypeFactory.scala:201)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.flink.table.calcite.FlinkTypeFactory.buildLogicalRowType(FlinkTypeFactory.scala:198)
at org.apache.flink.table.plan.schema.TableSourceTable.getRowType(TableSourceTable.scala:96)
at org.apache.calcite.prepare.CalciteCatalogReader.getTable(CalciteCatalogReader.java:131)
at org.apache.calcite.prepare.CalciteCatalogReader.getTableForMember(CalciteCatalogReader.java:228)
at org.apache.calcite.prepare.CalciteCatalogReader.getTableForMember(CalciteCatalogReader.java:84)
at org.apache.calcite.tools.RelBuilder.scan(RelBuilder.java:1068)
at org.apache.calcite.tools.RelBuilder.scan(RelBuilder.java:1094)
at org.apache.flink.table.plan.QueryOperationConverter$SingleRelVisitor.visit(QueryOperationConverter.java:268)
at org.apache.flink.table.plan.QueryOperationConverter$SingleRelVisitor.visit(QueryOperationConverter.java:134)
at org.apache.flink.table.operations.CatalogQueryOperation.accept(CatalogQueryOperation.java:69)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:131)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:111)
at org.apache.flink.table.operations.utils.QueryOperationDefaultVisitor.visit(QueryOperationDefaultVisitor.java:91)
at org.apache.flink.table.operations.CatalogQueryOperation.accept(CatalogQueryOperation.java:69)
at org.apache.flink.table.plan.QueryOperationConverter.lambda$defaultMethod$0(QueryOperationConverter.java:130)
at java.util.Collections$SingletonList.forEach(Collections.java:4824)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:130)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:111)
at org.apache.flink.table.operations.utils.QueryOperationDefaultVisitor.visit(QueryOperationDefaultVisitor.java:46)
at org.apache.flink.table.operations.ProjectQueryOperation.accept(ProjectQueryOperation.java:75)
at org.apache.flink.table.calcite.FlinkRelBuilder.tableOperation(FlinkRelBuilder.scala:106)
at org.apache.flink.table.planner.StreamPlanner.translateToType(StreamPlanner.scala:390)
at org.apache.flink.table.planner.StreamPlanner.translate(StreamPlanner.scala:185)
at org.apache.flink.table.planner.StreamPlanner.$anonfun$translate$1(StreamPlanner.scala:117)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:273)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at scala.collection.TraversableLike.map(TraversableLike.scala:273)
at scala.collection.TraversableLike.map$(TraversableLike.scala:266)
at scala.collection.AbstractTraversable.map(Traversable.scala:108)
at org.apache.flink.table.planner.StreamPlanner.translate(StreamPlanner.scala:117)
at org.apache.flink.table.api.scala.internal.StreamTableEnvironmentImpl.toDataStream(StreamTableEnvironmentImpl.scala:210)
at org.apache.flink.table.api.scala.internal.StreamTableEnvironmentImpl.toAppendStream(StreamTableEnvironmentImpl.scala:107)
at org.apache.flink.table.api.scala.TableConversions.toAppendStream(TableConversions.scala:101)
at io.redacted.test.package$.testJoin(package.scala:31)
at io.redacted.test.package$.process(package.scala:26)
at io.redacted.DataAggregator$.main(DataAggregator.scala:15)
at io.redacted.DataAggregator.main(DataAggregator.scala)


This exception is thrown even though I didn't select RAW data field `_startTime` which is of type `java.util.Date`. I believe this exception is undesirable.
Is there any way to obtain a RAW data from flink tables? If there isn't any, how do I circumvent my current issue? Do I need to manually update all table schema?

Unfortunately, I didn't find a satisfatory solutions.

Cheers,
Yi

Reply | Threaded
Open this post in threaded view
|

Re: Convert flink table with field of type RAW to datastream

uuuuuu
Hi Jark,

Thank you for your suggestion. My current problem is that there are quite a few data types. All these data types are defined upstream which I have no control.
I don't think I can easily change the type information of a specific field. Can I? Things become nasty when there are so many `java.util.Date` I need to change.

The reason I want to use flink table is that it allows me to easily join several tables. As an alternative, I think I can use stream join operator.
My only complaint is that it become tedious when I want to join more than once. I think I need to define all the intermediate data types.

Best,
Yi



‐‐‐‐‐‐‐ Original Message ‐‐‐‐‐‐‐
On Thursday, June 18, 2020 12:11 PM, Jark Wu <[hidden email]> wrote:

Hi YI,

Flink doesn't have a TypeInformation for `java.util.Date`, but only SqlTimeTypeInfo.DATE for `java.sql.Date`. 
That's why the TypeInformation.of(java.util.Date) is being recognized as a RAW type. 

To resolve your problem, I think in `TypeInformation.of(..)` you should use a concrete type for `java.util.Date`, e.g. `java.sql.Timestamp`, `java.sql.Date`, `java.sql.Time`. 

Best,
Jark

On Thu, 18 Jun 2020 at 10:32, YI <[hidden email]> wrote:
Hi all,

I am using flink to process external data. The source format is json, and the underlying data types are defined in a external library.
I generated table schema with `TableSchema.fromTypeInfo` and `TypeInformation.of[_]`. From what I read, this method is deprecated.
But I didn't find any alternatives. Manually tweaking table schema is not viable as there are simply too many types.

One of the field in the source type is `java.util.Date`. I tried to convert the obtained table to a datastream with Table.toAppendStream.
When I ran `tEnv.from("rawEvent").select('_isComplete).toAppendStream[(Boolean)].print()`, the following exception occurred.

Exception in thread "main" org.apache.flink.table.api.TableException: Type is not supported: Date
at org.apache.flink.table.calcite.FlinkTypeFactory$.org$apache$flink$table$calcite$FlinkTypeFactory$$typeInfoToSqlTypeName(FlinkTypeFactory.scala:350)
at org.apache.flink.table.calcite.FlinkTypeFactory.createTypeFromTypeInfo(FlinkTypeFactory.scala:63)
at org.apache.flink.table.calcite.FlinkTypeFactory.$anonfun$buildLogicalRowType$1(FlinkTypeFactory.scala:201)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.flink.table.calcite.FlinkTypeFactory.buildLogicalRowType(FlinkTypeFactory.scala:198)
at org.apache.flink.table.plan.schema.TableSourceTable.getRowType(TableSourceTable.scala:96)
at org.apache.calcite.prepare.CalciteCatalogReader.getTable(CalciteCatalogReader.java:131)
at org.apache.calcite.prepare.CalciteCatalogReader.getTableForMember(CalciteCatalogReader.java:228)
at org.apache.calcite.prepare.CalciteCatalogReader.getTableForMember(CalciteCatalogReader.java:84)
at org.apache.calcite.tools.RelBuilder.scan(RelBuilder.java:1068)
at org.apache.calcite.tools.RelBuilder.scan(RelBuilder.java:1094)
at org.apache.flink.table.plan.QueryOperationConverter$SingleRelVisitor.visit(QueryOperationConverter.java:268)
at org.apache.flink.table.plan.QueryOperationConverter$SingleRelVisitor.visit(QueryOperationConverter.java:134)
at org.apache.flink.table.operations.CatalogQueryOperation.accept(CatalogQueryOperation.java:69)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:131)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:111)
at org.apache.flink.table.operations.utils.QueryOperationDefaultVisitor.visit(QueryOperationDefaultVisitor.java:91)
at org.apache.flink.table.operations.CatalogQueryOperation.accept(CatalogQueryOperation.java:69)
at org.apache.flink.table.plan.QueryOperationConverter.lambda$defaultMethod$0(QueryOperationConverter.java:130)
at java.util.Collections$SingletonList.forEach(Collections.java:4824)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:130)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:111)
at org.apache.flink.table.operations.utils.QueryOperationDefaultVisitor.visit(QueryOperationDefaultVisitor.java:46)
at org.apache.flink.table.operations.ProjectQueryOperation.accept(ProjectQueryOperation.java:75)
at org.apache.flink.table.calcite.FlinkRelBuilder.tableOperation(FlinkRelBuilder.scala:106)
at org.apache.flink.table.planner.StreamPlanner.translateToType(StreamPlanner.scala:390)
at org.apache.flink.table.planner.StreamPlanner.translate(StreamPlanner.scala:185)
at org.apache.flink.table.planner.StreamPlanner.$anonfun$translate$1(StreamPlanner.scala:117)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:273)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at scala.collection.TraversableLike.map(TraversableLike.scala:273)
at scala.collection.TraversableLike.map$(TraversableLike.scala:266)
at scala.collection.AbstractTraversable.map(Traversable.scala:108)
at org.apache.flink.table.planner.StreamPlanner.translate(StreamPlanner.scala:117)
at org.apache.flink.table.api.scala.internal.StreamTableEnvironmentImpl.toDataStream(StreamTableEnvironmentImpl.scala:210)
at org.apache.flink.table.api.scala.internal.StreamTableEnvironmentImpl.toAppendStream(StreamTableEnvironmentImpl.scala:107)
at org.apache.flink.table.api.scala.TableConversions.toAppendStream(TableConversions.scala:101)
at io.redacted.test.package$.testJoin(package.scala:31)
at io.redacted.test.package$.process(package.scala:26)
at io.redacted.DataAggregator$.main(DataAggregator.scala:15)
at io.redacted.DataAggregator.main(DataAggregator.scala)


This exception is thrown even though I didn't select RAW data field `_startTime` which is of type `java.util.Date`. I believe this exception is undesirable.
Is there any way to obtain a RAW data from flink tables? If there isn't any, how do I circumvent my current issue? Do I need to manually update all table schema?

Unfortunately, I didn't find a satisfatory solutions.

Cheers,
Yi


Reply | Threaded
Open this post in threaded view
|

Re: Convert flink table with field of type RAW to datastream

Jark Wu-3
Flink SQL/Table requires to know the field data types explicitly. Maybe you can apply a MapFunction before `toTable` to convert/normalize the data and type. 

Best,
Jark

On Thu, 18 Jun 2020 at 14:12, YI <[hidden email]> wrote:
Hi Jark,

Thank you for your suggestion. My current problem is that there are quite a few data types. All these data types are defined upstream which I have no control.
I don't think I can easily change the type information of a specific field. Can I? Things become nasty when there are so many `java.util.Date` I need to change.

The reason I want to use flink table is that it allows me to easily join several tables. As an alternative, I think I can use stream join operator.
My only complaint is that it become tedious when I want to join more than once. I think I need to define all the intermediate data types.

Best,
Yi



‐‐‐‐‐‐‐ Original Message ‐‐‐‐‐‐‐
On Thursday, June 18, 2020 12:11 PM, Jark Wu <[hidden email]> wrote:

Hi YI,

Flink doesn't have a TypeInformation for `java.util.Date`, but only SqlTimeTypeInfo.DATE for `java.sql.Date`. 
That's why the TypeInformation.of(java.util.Date) is being recognized as a RAW type. 

To resolve your problem, I think in `TypeInformation.of(..)` you should use a concrete type for `java.util.Date`, e.g. `java.sql.Timestamp`, `java.sql.Date`, `java.sql.Time`. 

Best,
Jark

On Thu, 18 Jun 2020 at 10:32, YI <[hidden email]> wrote:
Hi all,

I am using flink to process external data. The source format is json, and the underlying data types are defined in a external library.
I generated table schema with `TableSchema.fromTypeInfo` and `TypeInformation.of[_]`. From what I read, this method is deprecated.
But I didn't find any alternatives. Manually tweaking table schema is not viable as there are simply too many types.

One of the field in the source type is `java.util.Date`. I tried to convert the obtained table to a datastream with Table.toAppendStream.
When I ran `tEnv.from("rawEvent").select('_isComplete).toAppendStream[(Boolean)].print()`, the following exception occurred.

Exception in thread "main" org.apache.flink.table.api.TableException: Type is not supported: Date
at org.apache.flink.table.calcite.FlinkTypeFactory$.org$apache$flink$table$calcite$FlinkTypeFactory$$typeInfoToSqlTypeName(FlinkTypeFactory.scala:350)
at org.apache.flink.table.calcite.FlinkTypeFactory.createTypeFromTypeInfo(FlinkTypeFactory.scala:63)
at org.apache.flink.table.calcite.FlinkTypeFactory.$anonfun$buildLogicalRowType$1(FlinkTypeFactory.scala:201)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.flink.table.calcite.FlinkTypeFactory.buildLogicalRowType(FlinkTypeFactory.scala:198)
at org.apache.flink.table.plan.schema.TableSourceTable.getRowType(TableSourceTable.scala:96)
at org.apache.calcite.prepare.CalciteCatalogReader.getTable(CalciteCatalogReader.java:131)
at org.apache.calcite.prepare.CalciteCatalogReader.getTableForMember(CalciteCatalogReader.java:228)
at org.apache.calcite.prepare.CalciteCatalogReader.getTableForMember(CalciteCatalogReader.java:84)
at org.apache.calcite.tools.RelBuilder.scan(RelBuilder.java:1068)
at org.apache.calcite.tools.RelBuilder.scan(RelBuilder.java:1094)
at org.apache.flink.table.plan.QueryOperationConverter$SingleRelVisitor.visit(QueryOperationConverter.java:268)
at org.apache.flink.table.plan.QueryOperationConverter$SingleRelVisitor.visit(QueryOperationConverter.java:134)
at org.apache.flink.table.operations.CatalogQueryOperation.accept(CatalogQueryOperation.java:69)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:131)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:111)
at org.apache.flink.table.operations.utils.QueryOperationDefaultVisitor.visit(QueryOperationDefaultVisitor.java:91)
at org.apache.flink.table.operations.CatalogQueryOperation.accept(CatalogQueryOperation.java:69)
at org.apache.flink.table.plan.QueryOperationConverter.lambda$defaultMethod$0(QueryOperationConverter.java:130)
at java.util.Collections$SingletonList.forEach(Collections.java:4824)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:130)
at org.apache.flink.table.plan.QueryOperationConverter.defaultMethod(QueryOperationConverter.java:111)
at org.apache.flink.table.operations.utils.QueryOperationDefaultVisitor.visit(QueryOperationDefaultVisitor.java:46)
at org.apache.flink.table.operations.ProjectQueryOperation.accept(ProjectQueryOperation.java:75)
at org.apache.flink.table.calcite.FlinkRelBuilder.tableOperation(FlinkRelBuilder.scala:106)
at org.apache.flink.table.planner.StreamPlanner.translateToType(StreamPlanner.scala:390)
at org.apache.flink.table.planner.StreamPlanner.translate(StreamPlanner.scala:185)
at org.apache.flink.table.planner.StreamPlanner.$anonfun$translate$1(StreamPlanner.scala:117)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:273)
at scala.collection.Iterator.foreach(Iterator.scala:943)
at scala.collection.Iterator.foreach$(Iterator.scala:943)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
at scala.collection.TraversableLike.map(TraversableLike.scala:273)
at scala.collection.TraversableLike.map$(TraversableLike.scala:266)
at scala.collection.AbstractTraversable.map(Traversable.scala:108)
at org.apache.flink.table.planner.StreamPlanner.translate(StreamPlanner.scala:117)
at org.apache.flink.table.api.scala.internal.StreamTableEnvironmentImpl.toDataStream(StreamTableEnvironmentImpl.scala:210)
at org.apache.flink.table.api.scala.internal.StreamTableEnvironmentImpl.toAppendStream(StreamTableEnvironmentImpl.scala:107)
at org.apache.flink.table.api.scala.TableConversions.toAppendStream(TableConversions.scala:101)
at io.redacted.test.package$.testJoin(package.scala:31)
at io.redacted.test.package$.process(package.scala:26)
at io.redacted.DataAggregator$.main(DataAggregator.scala:15)
at io.redacted.DataAggregator.main(DataAggregator.scala)


This exception is thrown even though I didn't select RAW data field `_startTime` which is of type `java.util.Date`. I believe this exception is undesirable.
Is there any way to obtain a RAW data from flink tables? If there isn't any, how do I circumvent my current issue? Do I need to manually update all table schema?

Unfortunately, I didn't find a satisfatory solutions.

Cheers,
Yi